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Abstract. In this paper, we present three different types of new generic attacks against HMAC and
other similar MACs when instantiated with an n-bit output hash function maintaining an l-bit internal
state. Firstly, we describe two types of selective forgery attacks, in which an adversary commits on the
forged message beforehand. The first type is a tight attack which requires O(2l/2) computations, while
the second one requires O(22l/3) computations, but offers much more freedom degrees in the choice of
the committed message. Secondly, we propose an improved universal forgery attack which significantly
reduces the complexity of the best known attack from O(25l/6) to O(23l/4). Finally, we describe the very
first time-memory tradeoff for key recovery attack on HMAC. With O(2l) precomputation, the internal key
Kout is firstly recovered with O(22l/3) computations by exploiting the Hellman’s time-memory tradeoff,
and then the other internal key Kin is recovered with O(23l/4) computations by a novel approach using
a property of functional graph. These results indicate the inefficiency in using long keys for HMAC, i.e.,
keys with more than l bits does not provide higher security.
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1 Introduction

A message authentication code (MAC) ensures both integrity and authenticity of messages transmitted between
two parties sharing a secret key K in advance. When the sender would like to send a message M, he first
generates the tag T computed by T = MAC(K,M), and then sends the pair (M, T ) to the other party. The
receiver computes the tag value with the received message using his own key K and checks if this value
matches the received tag value T . If they do match, he knows that the messageM received was correct and
indeed sent by the other party.

A classical method to build a MAC algorithm is to use a hash function. A well-known example is HMAC [1],
designed by Bellare et al., which has been standardized by ANSI, IETF, ISO and NIST, and is widely
implemented in various security protocols such as SSL/TLS and IPSec.

There are several security requirements one expects a secure MAC to verify. Informally, it should resist
key recovery attacks, any type of forgery attacks, as well as any distinguishing attacks. We note that key
recovery and forgeries are arguably the most important security notions as they have the greatest impact
in practice. We provide below definitions of the attacks which are related to this paper. It is assumed that
the adversary can interact with an oracle that outputs the valid tag T = MAC(K,M) when queried with a
message M.

Key recovery: the adversary recovers the secret-key K used in the MAC algorithm.

Selective forgery: the adversary first commits on a message M before interacting with the oracle,
and then builds a valid pair (M, T ), without having queried M.

Universal forgery: the adversary first receives a messageM sent as challenge, and then builds a valid
pair (M, T ), without having queried M.

The security of a MAC construction is discussed in terms of lower-bound and upper-bound on the com-
plexity of the attack for each notion. Regarding the lower-bound, many hash based MACs including HMAC are



proven to be indistinguishable from a PRF (pseudo-random function) up to O(2l/2) queries, where l is the
internal state size of the underlying hash function with n-bit hash digests.

On the other hand, the upper-bound on the complexity is shown by demonstrating a generic attack for
each notion. Concerning the notions of existential forgery and the distinguishing-R, Preneel et al. proposed
a tight generic attack, i.e., the attack complexity matches the proven lower-bound [17]. Their method is
based on an internal collision generated with a birthday complexity of O(2l/2). Following a similar collision-
detection based approach, Naito et al. proposed a distinguishing-H attack with a complexity of O(2l/l) [14].
Although this approach is powerful, its direct application to other notions, particularly the above three
defined notions, seems difficult.

Recently, cryptographers have proposed new attack approaches by studying the cycle property of func-
tional graphs and by studying entropy loss of sequential iterations, and applied them to find new generic
attacks on hash based MACs [15, 4, 12, 16], as well as dedicated attacks on instances of specific designs [8, 7].
Interestingly, these approaches have even been used to analyze the notions selective forgery and universal
forgery. In [16], Peyrin and Wang showed a universal forgery with a complexity of O(25l/6), which is based on
cycle property of functional graph. At the same time with our paper, in [3], Dinur and Leurent found another
universal forgery with a complexity of O(26l/7) but with shorter queries and thus with wider applications
(Peyrin and Wang’s attack inherently needs to use queries of O(2l/2) blocks long), which is based on collision
entropy loss of iterations. We note that selective forgery is a weaker security notion than universal forgery
(an attacker can use a universal forgery to generate selective forgeries), and hence these universal forgery
attacks can be directly used to obtain a selective forgery with the same complexity.

The current best known universal forgery and selective forgery attacks on hash function based MAC

algorithms in [16] are not tight and it remains as an open problem if attacks and/or proofs can be improved.
Moreover, as of today, key recovery remains the only security notion for which no generic attack was proposed
on hash function based MAC algorithms.

Our contributions. In this article, we present improved selective forgery attacks against HMAC, NMAC, and
other similar MACs, as well as an improved universal forgery attack and the very first time-memory tradeoff
for key recovery attack.

More precisely, we first describe two types of selective forgery attacks. The first type offers rather limited
choice to the adversary regarding the committed message and this message must consist of at least O(2l/2)
blocks, but the overall complexity is only O(2l/2) computations, which matches the proven lower-bound for
hash-based MAC algorithms. On the other hand, the second type permits a much broader choice of committed
message (the scenario is actually quite close to a universal forgery attack), and its complexity depends on
the block length of the committed message. Particularly, the committed message must consist of at least
O(2l/3) blocks in order to obtain the optimal complexity of O(l · 22l/3) computations. Giving an example
with the specifications of widely used hash functions, such as SHA-1 or SHA-256 [20], the adversary can freely
choose the committed message, except about 12.5% of it. The former type is a direct application of the
distinguishing-H attacks from [12], while the latter is obtained by devising an expandable message technique
in the keyed scenario, which was originally proposed by Kelsey and Schneier for keyless hash functions [10].
The obvious main difficulty in the keyed scenario is that the adversary cannot access the internal state values
anymore.

Secondly, we improve the complexity of the best known universal forgery attack for hash-based MAC algo-
rithms, which is reduced to O(max(2l−s, 23l/4, 2s)) for a challenge message composed of 2s blocks. Roughly,
the complexity has been significantly reduced from O(25l/6) to O(23l/4). Previous universal forgery at-
tacks [16] are based on the analysis of nodes’ height in the MAC functional graph, the height of a node x
being the number of nodes linking x to the cycle of its own component in the functional graph. The basic
principle of this attack is that the adversary will first collect offline many values and their exact height in
the MAC functional graph, and then use this information to perform the forgery. Unfortunately, the authors
failed to estimate the height distributions for the nodes collected offline, which essentially prevents the attack
complexity to go below 25l/6 computations. In order to overcome this, we performed experiments in order to
investigate these height distributions, and we finally observed a very interesting property. This observation
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remains a conjecture as of today, but confidence in its validity is backed up by our experiments. Based on
this conjecture, we managed to improve the universal forgery attack.

Lastly, we propose the first time-memory tradeoff for key recovery attack against HMAC and NMAC. Before
discussing our attacks, the key size of HMAC and NMAC needs to be specified. For NMAC instantiated with a l-bit
internal state hash function, the key size is l bits for the first key and l bits for the second key, for a total
key size of 2l bits. HMAC is defined to accept a secret key of an arbitrary size. If the key size is longer than the
block size, the key is first hashed by using the underlying hash function, and then the corresponding digest
is used as the key. As later explained in Section 2, keys longer than n bits are quite common in industry
implementations. Our key recovery attack will target these keys that are larger than n bits. We show that
by performing a clever precomputation phase, the second key in NMAC or the equivalent key Kout in HMAC

can be recovered with a time complexity of O(22l/3) computations and a memory to store O(22l/3) states
by applying the Hellman’s time-memory tradeoff. After that, the first key in NMAC or the equivalent key Kin

in HMAC can be recovered with a time complexity of O(23l/4) computations and a memory to store O(23l/4)
states.

Paper outline. We recall the HMAC and NMAC specifications in Section 2 and properties of functional graphs
in Section 3. Then, we explain the two types of selective forgery attacks in Section 4 and the improved
universal forgery attack in Section 5. Finally, we describe the generic key recovery attack in Section 6 and
we conclude the paper in Section 7.

2 Description of NMAC and HMAC

A hash function H maps arbitrarily long messages to an n-bit digest. It is usually built by iterating a
compression function f , which maps inputs of l+ b bits to outputs of l bits. In details, H first pads an input
messageM to be a multiple of b bits, then splits it into blocks of b bits each, i.e., pad(M) = M1‖M2‖ · · · ‖Ms,
where ‖ denotes the concatenation operation. It then calls the compression function f iteratively to process
these blocks. Finally, H may use a finalization function g that maps l bits to n bits to produce the hash
digest. Namely, set X0 ← IV , compute Xi ← f(Xi−1,Mi) for i = 1, 2, . . . , s, and produce g(Xs) as the final
digest, with some finalization function g. Each internal state word Xi is l-bit long, and IV (initial value) is
a public constant.

NMAC algorithm [1] keys a hash function H by replacing the public IV with a secret key K, which is
denoted as HK . It then uses two l-bit secret keys Kin and Kout referred to as the inner and the outer keys
respectively, and makes two calls to the hash function H. NMAC is simply defined to process an input message
M as NMAC(Kout,Kin,M) = HKout(HKin(M)). Keyed functions HKin and HKout are referred to as the inner
and the outer (hash) functions respectively.

IV 

K⊕ipad M0 ML-1||pad K⊕opad 

T f f f f f 

b b b b b 

n l l l l l l l 

pad 

Kin Kout 

g g l n 

Fig. 1. HMAC with a narrow-pipe hash function
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HMAC algorithm [1] is a single-key variant of NMAC, depicted in Figure 1. It derives Kin and Kout from
the single secret key K as Kin = f(IV,K ⊕ ipad) and Kout = f(IV,K ⊕ opad), where ipad and opad are
two distinct public constants. HMAC is then simply defined to process an input messageM as HMAC(K,M) =
H((K ⊕ opad)‖H((K ⊕ ipad)‖M)). HMAC accepts any key size. If the key K is shorter than b bits, then it is
padded with 0 bits to reach the size b of a complete compression function message block. Otherwise, if the
key K is longer than b bits, then it is hashed and padded with 0 bits: K ← H(K)‖0b−n.

Regarding the use of keys which are longer than the tag size (n bits), there are both positive and
negative decisions by standardization bodies. Indeed, RFC [11] only specifies that n bits is the minimum
recommended key size. Though it does not specify the maximum key size, it explains that keys longer than n
bits are acceptable, but the extra length would not significantly increase the function strength. However, it
recommends longer key sizes when the randomness of the key is considered weak. FIPS [21] specifies that the
effective security strength of the HMAC key is the minimum of the security strength of the key and the value
of 2l, where l is the internal state size. Hence, it seems natural to use 2l-bit keys if that is possible, so as to
maximize the security of the construction. Finally, we observe that in fact industry often implements HMAC

with much longer key sizes than n bits. This is the case for example in MonoCrypt, which is a cryptographic
library currently operated in commerce developed by SBI Net Systems [19]. MonoCrypt supports 80-bit,
128-bit, 512-bit, 576-bits, and 640-bit keys for HMAC-SHA-1 and 160-bit, 192-bit, 512-bit, 576-bit, and 640-bit
keys for HMAC-SHA-256.

For simplicity, hereafter we will describe the attacks based on HMAC. However, we emphasize that our
methods apply similarly to hash function based MACs such as NMAC [1] and Sandwich-MAC [22].

3 Functional graph

In this article and in previous works on HMAC cryptanalysis [15, 12, 16], the analysis of properties of functional
graphs for random functions is very important. We recall a few results in this section.

The functional graph Gf of a function f : {0, 1}l → {0, 1}l is simply the directed graph in which the
vertices (or nodes) are all the values in {0, 1}l and where the directed edges are the iterations of f (i.e. a
directed edge from a vertex a to a vertex b exists if and only if f(a) = b). The functional graph of a function
is composed of one or several components, each having its own internal cycle.

The following Theorems 1, 2 and 3 state several statistical properties of the functional graph of a random
function.

Theorem 1 ([5, Th. 2]). The expectations of the number of components, number of cyclic nodes (a node
belonging to the cycle of its component), number of terminal nodes (a node without a preimage), and number
of image nodes (a node with a preimage) in a random mapping of size N have the asymptotic forms, as
N →∞:

(i) #Components: 1
2 logN

(ii) #Cyclic nodes:
√
πN/2

(iii) #Terminal nodes: e−1N

(iv) #Image nodes: (1− e−1)N

Starting from any node x, the iteration structure of f is described by a simple path that connects to a
cycle. The length of the path (measured by the number of edges) is called the tail length of x (or the height
of x) and is denoted by λ(x). The length of the cycle is called the cycle length of x and is denoted µ(x).
Finally, the rho-length of x is denoted ρ(x) and represents the length of the non repeating trajectory of x:
ρ(x) = λ(x) + µ(x).

Theorem 2 ([5, Th. 3]). Seen from a random node in a random mapping of size N , the expectations of
the tail length, cycle length, rho length, tree size, component size, and predecessors size have the following
asymptotic forms:
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(i) Tail length (λ):
√
πN/8

(ii) Cycle length (µ):
√
πN/8

(iii) Rho length (ρ = λ+ µ):
√
πN/2

(iv) Tree size: N/3

(v) Component size: 2N/3

(vi) Predecessors size:
√
πN/8

Moreover, the asymptotic expectations of the giant component and its giant tree have been provided in [6].

Theorem 3 ([6, VII.14]). In a random mapping of size N , the largest tree and the largest component have
expectations asymptotic, respectively, of 0.48 ∗N and 0.7582 ∗N .

In this article, we will study the functional graph of a compression function f , when a constant value M
is used as message block input (i.e. the function f is iterated with fixed messages block all equal to M). We
will denote such a function as fM : {0, 1}l → {0, 1}l, and GfM its corresponding functional graph.

4 Selective forgery attacks

In this section, we show two types of generic selective forgery attacks against HMAC. The attacker first commits
on some message M, and then can interact with the MAC oracle to output the valid tag T corresponding to
M without querying M. Note that the offline phase refers to the computations done before committing on
M, while the online phase refers to the computations done and the queries sent after committing on M.
Moreover, we denote M (i) the i successive concatenation of M .

4.1 Attack with a very constrained target message

The adversary will have to choose a long message, composed of O(2l/2) blocks. Our method is a direct
application of the distinguishing-H technique by [12].

Committing Phase (Offline)

1. As done in [12], draw the functional graph GfM of the underlying compression function f where a fixed
message block M is used as the input message block, and compute the size γ of the cycle of the largest
component.

2. Select as target message for the selective forgery the messageM = M (2l/2)‖M ′‖M (2l/2+γ), where M ′ can
be any message block such that M ′ 6= M .

Challenging Phase (Online)

3. Query M (2l/2+γ)‖M ′‖M (2l/2) to obtain the tag T . Output the pair (M, T ).

The complexity and success probability evaluation is exactly the same as in [12] and we refer to the
original article for more details. Informally, since a least 2l/2 identical message blocks M are used as prefix
and suffix, there is a good chance that we enter in the main cycle of the functional graph GfM before
and after processing message block M ′. If this is true for M then it will be true for the queried message

M (2l/2+γ)‖M ′‖M (2l/2) as well, and both will be fully synchronized inside the cycle, which means that they
will end up to the same tag value. The overall success probability is equal to 0.14, but if needed it can be
improved by iterating the fixed message block M a little bit more. The overall attack complexity is O(2l/2)
computations, which matches the proven lower-bound of the HMAC construction. This attack is therefore tight
and it closes the discussions on the security gap of HMAC with regards to selective forgery notion.

Concerning the choice of the target message M by the adversary, we note that he can freely choose the
values of M and M ′, but he can also append any prefix and suffix while preserving the validity of the attack.
However, the target message M eventually contains quite a long iteration of an identical message block M ,
which constrains a lot the adversary’s freedom to choose it.
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Fig. 3. Strategy for computing a selective forgery
with more freedom degrees on the target message.

4.2 Attack with more freedom degrees on the target message

The padding scheme used in the underlying hash function is heavily related to this analysis. Here, we suppose
the MD-strengthening padding, which is widely used in practice e.g. by SHA-1 or SHA-256 [20]. Its essence
is appending the message length information to the end of the message. See [20] for details.

In Section 4.2, we suppose that the underlying hash function is narrow-pipe, i.e. l← n.
Our selective forgery attack uses a strategy similar to the previous generic second-preimage attack for

hash functions [2, 10], which can generate a second-preimage with a complexity of 2n−c for a target message
of size 2c blocks. We briefly recall previous second-preimage attacks on hash functions. The initial idea is
to try 2n−c random messages in order to find one that collides with one value of the 2c internal chaining
variables of the target message. However, the pre-specified message length in the padding string prevents
this naive attack. Kelsey and Schneier showed that this issue can be solved with a multi-collision consisting
of messages with different block lengths [10]. The generated multi-collision structure is called an expandable
message. Informally, it generates a collision between a 1-block message and a 1 + 20 = 2-block message,
followed by a collision between an 1-block message and a 1 + 21 = 3-block message. Similarly, a collision
between an 1-block message and a (1 + 2i)-block message is generated for i = 0, 1, . . . , d−1. Then, any block
length from d to d+ 2d − 1 can be reached by choosing the appropriate combination of the message blocks.
An example is shown in Figure 2.

Adapting the generic second-preimage attacks for hash functions to compute selective forgery in the
setting of MAC’s presents several main difficulties:

1. Due to the two equivalent secret keys in HMAC, the adversary cannot access the internal state values after
each message block is processed.

2. If the length of an input message changes, the MD-strengthening padding for the inner function will be
different and thus the result of the outer function will change as well. This makes it difficult to cut an
input message and analyze only up to the exact middle (i-th) message block.

Attack overview. Before going into details, we explain our strategy, which is illustrated in Figure 3. To
begin, we solve the first issue. In our attack, instead of storing the internal state value after each message
block (which is unknown because of the secret key used in the MAC), the adversary queries the first i blocks of
the 2c-block target message for i = 1, 2, . . . , 2c−1, and stores the corresponding tags. Namely, the first query
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is M0, the second query is M0‖M1, the third query is M0‖M1‖M2, and so on. Let Xi be the unknown internal
state value after processing the i-th message block and Ti its corresponding tag value. This is illustrated in
top of Figure 3. The adversary later searches for a connection from the target message to the 2n−c-block
second message. Let X ′j be the output of the inner function (the internal state) and T ′j its corresponding tag
value for the second message, where j = 1, 2, . . . , 2n−c. This is illustrated in bottom of Figure 3. If we can
make the function from Xi to Ti and the function from X ′j to T ′j identical, a collision on the tag (i.e. Ti = T ′j)
suggests a collision of the internal state (i.e. Xi = X ′j) with a good probability. Therefore, a connection from
the second message to the target message can be found just by looking at the tag outputs, without even
knowing the internal state values.

We then explain our strategy to solve the second issue. As indicated in Figure 3, the function from Xi

to Ti may process the padding block, which depends on the input message length. This padding block issue
can be avoided by selecting the target message so that the padding string is embedded inside each message
block. Namely, message block Mi is chosen to be composed of Mi = mi‖pi where mi can be any value, and
where pi is the padding string corresponding to a message of i+ 1 blocks plus the bit length of |mi|.

With these few tricks, we can adapt the second-preimage attacks to the MAC setting and the selective
forgery attack can eventually be carried out successfully.

Attack procedure. Our attack is divided into five steps: 1) selecting the target message, 2) obtaining Ti,
3) building an expandable message, 4) obtaining T ′j , and 5) forging the tag. Only the first step is done offline,
the rest being online.

1. Selecting the target message. The attacker must commit on the target messageM of length c+2c+1
blocks3, where c is a parameter for the attack that we will determine later. More precisely, he will choose
M = M−c‖ · · · ‖M−1‖M0‖ · · · ‖M2c−1‖M2c , where the first c blocks M−c‖ · · · ‖M−1 and the last block
M2c can take any value of his choice. For the middle 2c blocks from M0 to M2c−1, he will set each block
as Mi ← mi‖pi, where mi can be set to any value of his choice and where pi is the padding string
corresponding to 1 + c + i blocks plus |mi| bits (here the “1 + c” corresponds to the first 1 + c blocks
(K ⊕ ipad)‖M−c‖ · · · ‖M−1 that will be handled by the internal hash function).

2. Obtaining Ti. After committing on M, the online part can start:

1. Query M−c‖ · · · ‖M−1‖m0 and store the tag T1 in a list L.
2. Query M−c‖ · · · ‖M−1‖M0‖m1 and store the tag T2 in L.
i. Query M−c‖ · · · ‖M−1‖M0‖ · · · ‖Mi−2‖mi−1 and store the tag Ti in L for i = 3, 4, . . . , 2c.

For the query at step i, due to the padding process the last message block becomes mi−1‖pi−1 which is
in fact Mi−1.

3. Building an expandable message. The adversary builds an expandable message ranging from c blocks
to c + 2c − 1 blocks in order to later have the possibility to freely adjust the length. Eprev will denote
the shortest colliding message discovered so far and is naturally initialized to a null string. Then, the
following procedure is iterated for i = 0, 1, . . . , c− 1:

3.1 Choose 2n/2 distinct 1-block messages Ei[u]. Query Eprev‖Ei[u] and store the tags in a list Lu.
3.2 Choose 2n/2 distinct (2i+ 1)-block messages E′i[v]. Query Eprev‖E′i[v] and store the tags in a list Lv.
3.3 Find a match between Lu and Lv. Let û and v̂ be the matched indices.
3.4 To eliminate the false positives, find a collision by appending 2n/2 distinct single block messages

after Eprev‖Ei[û]‖pû, where pû is the corresponding padding bits. Let Ex and E′x be two messages
that lead to a collision.

3.5 Query Eprev‖E′i[v̂]‖pv̂‖Ex and Eprev‖E′i[v̂]‖pv̂‖E′x. If their tags collide, Ei[û] and Ei[v̂] are internal
collisions. Store Ei[û]‖pû and E′i[v̂]‖pv̂ as the i-th colliding pair of the expandable message. Otherwise,
they are false positive, and we continue the search.

3.6 Update Eprev ← Eprev‖Ei[û]‖pû.

3 “c” comes from the minimum length of the expandable message and “+1” comes from the last message block. The
detailed reasoning for the “+1” is explained later.

7



The number of queries for Step 3.1 and Step 3.2 for the i-th block is (i+ 1) · 2n/2 and (i+ 1 + 2i) · 2n/2
respectively, which is unbalanced. For optimization, we generate more shorter messages Eprev‖Ei[u] than
longer messages Eprev‖E′i[v]. Let α and β be i+1 and 2i+ i+1, respectively. We get balance between the
two query costs by generating 2n/2+(log β−logα)/2 choices of Eprev‖Ei[u] and 2n/2−(log β−logα)/2 choices of

Eprev‖E′i[v]. The entire cost is the sum of two costs over the c iterations,
∑c−1
i=0 2(n/2+log β+logα)/2+1,

which amounts to O(c · 2n/2+c/2) blocks of queries. The memory cost is for storing tag values for
Eprev‖E′i[v] in which the number of generation is smaller than the tag values for Eprev‖Ei[u]. Hence, the

memory cost is 2n/2−(log(2
i+i+1)−log(i+1))/2 When i ← c, the memory cost is O(2n/2−c/2). The cost for

eliminating false positives at Step 3.4 is (i+ 1) · 2n/2, which is smaller than Steps 3.1 and 3.2.
4. Obtaining T ′j. The length of the expandable message is at minimum c blocks, and we let M ′E denote

this shortest c-block instance of the expandable message. Then, (Kin ⊕ ipad)‖M ′E fits in 1 + c blocks.
The adversary generates 2j distinct 1-block message M ′j = m′j‖p′ for j = 1, 2, . . . , 2n−c, where p′ is the
padding string for messages of 1 + c blocks plus |m′j | bits long. Query M ′E‖m′j for j = 1, 2, . . . , 2n−c, and
store the received tag T ′j in a list L′.

5. Forging the tag. Because 2c Ti values are stored in L and 2n−c T ′j values are stored in L′, we expect to
find a match between Ti and T ′j . With a good probability, the corresponding Xi and X ′j are also colliding.
Then, the length of the expandable message is adjusted to be equal to c+i−1 blocks so that the length of
the expandable message followed by the blockM ′j can be the same as the length ofM−c‖ · · · ‖M−1‖M0‖ · · · ‖Mi−1.

We denote M ′ the message chunk build by concatenating the length-adjusted expandable message and
M ′j .
These two messages have the same length and result in the same internal state value. Thus, the adversary
can append Mi‖Mi+1‖ · · · ‖M2c to the end of M ′, and query to the oracle this newly formed message.
The received tag value T is also a valid tag for the selected target message M.
Note that we need to ensure that the match is done before the last message block ofM, so that we have
at least 1 block appended to M ′. That is the reason why we add the last block M2c .

Complexity evaluation. We proceed the complexity evaluation of our attack. First, one can see that Step 1
is negligible, while Step 2 requires to query c+1, c+2, . . . , c+2c blocks, which amounts c·2c+2c·(2c+1)/2 ≈ 22c

blocks in total. It also requires a memory sufficient to store 2c tags. In Step 3, the cost is O(c · 2n/2+c/2)
queries and O(2n/2−c/2) tags as explained previously, and the memory cost is equivalent to O(2n/2−c/2).
tags. Step 4 requires to query (c+1) ·2n−c blocks and a memory to store 2n−c tags, while Step 5 is negligible
(one can combine Step 4 and Step 5 so that values generated at Step 4 are tested immediately, which would
render this part memoryless).

In total, the number of queries is about 22c + c · 2n/2+c/2 + (c + 1) · 2n−c blocks, which is minimized
to O(n · 22n/3) blocks when c = n/3. The memory requirement is O(2c + 2n/2−c/2), which would become
O(2n/3) when c = n/3.

5 Improved universal forgery attacks

In this section, we show an improved generic universal forgery attack against HMAC. We recall that for
universal forgeries, the attacker is first challenged with a message M, and after interacting with the MAC

oracle he must output the valid tag T corresponding to M (without querying M to the oracle).

5.1 Revisiting previous universal forgery attacks on HMAC and NMAC

Recently, Peyrin and Wang published a universal forgery attack on iterative hash function-based MACs [16].
Their attack use a special property: the height of a node in a functional graph. We recall that in a functional
graph each node x has a unique path connecting it with a cycle node, and the length of this path is called
the height of x and is denoted as λ(x). A brief description of their attack is provided below.
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LetM = M1‖M2‖ · · · ‖M2s be the given challenge message (after padding) for the universal forgery, and
X = {X1, X2, . . ., X2s} be the successive internal state values during the processing of M in inner hash
function, where Xi denotes the internal state after M1‖ · · · ‖Mi has been processed.

The attacker computes the height in a functional graph of 2s1 (s1 < s) unknown internal state values
during the processing of the challenge message. Meanwhile he also collects 2l−s1 offline values with their
heights in the same functional graph. Note there is a good probability that one unknown internal state
value collides with one offline collected value, which of course have the same height value. Then the attacker
deduces the exact value of one of the unknown internal state values by identifying such a collision pair.
In details, the attacker first matches the height values between the unknown internal state values and the
offline collected values, which exponentially reduce the candidate pairs, and then examines each remaining
pair individually. Finally, Once an internal state value is recovered, a classical second-preimage-like attack
trivially allows to compute a universal forgery for the challenge.

However, Peyrin and Wang left an open problem, that is the height distribution in the set of the offline
collected values. It is essential in order to obtain tighter upper bound of the attack complexity, and thus
deserves further investigation. Due to the limited space, we refer to [16] for detailed argument. Here we
mainly recall the procedure of collecting offline values and computing their heights, and then illustrate why
it is hard to analyze their height distribution. Let GfM be the functional graph used in the attack, where V
is a random message block value chosen by the attacker. The procedure is described below.

1. Initialize a table Y to be empty.
2. Select a random node y1 such that y1 /∈ Y .
3. Iteratively compute yi = fV (yi−1) until either of two cases occur:
• yi collides with a previously stored nodes in Y ; or
• yi collides with a previous node yj (1 ≤ j ≤ i − 1) in the currently computed chain, namely a new

cycle is generated.
4. Compute the height values for all nodes y1, . . ., yi in the chain, and store them in Y .
5. Repeat Steps 2− 4 until the number of nodes in Y becomes 2l−s1 .

As we see, it is quite a difficult task to analyze the height distribution in the set Y because the nodes are
not chosen uniformly (the process does not pick each node individually and randomly, but it picks a node
y1 and then picks all the nodes in the chain from y1 to the cycle of y1’s component in the functional graph
GfM ).

5.2 Our observations

We have experimentally investigated the height distributions in the set Y , which is generated by the procedure
in Section 5.1. Denote by Yλ a subset of nodes in Y that have the height value λ, and by |Yλ| the number of
nodes in Yλ. In our experiment, we mainly pay attention on finding the smallest height value λ such that |Yλ|
is asymptotically less than 2l/2−s, and observed an interesting phenomenon. Although we did not manage to
prove formally this observation, we state this reasonable conjecture below.

Conjecture 1. If in total 2t distinct nodes, where l/2 ≤ t ≤ l holds, are collected following the procedure in
Section 5.1, then for any integer λ satisfying 1 ≤ λ ≤ 2l/2/l, there are Θ(2t−l/2) nodes collected with the
height value λ.

The extreme cases t = l/2 and t = l are easy to analyze. For the case t = l/2, a randomly selected starting
node has a height value Θ(2l/2) on average, and then for each height value λ such that 1 ≤ λ ≤ 2l/2/l holds,
Θ(1) nodes will be collected. For the case t = l, researchers have already carried out extensive studies on
this topic. The set of all nodes with the same height λ is usually called the λ-th stratum of the functional
graph, and we denote it as Sλ. Particularly, Mutafchiev [13] has proven the following theorem.

Theorem 4 ([13, Lemma 2]). If l → ∞ and λ = o(2l/2), the mean value of the λ-th stratum Sλ is√
π/2 ∗ 2l/2.
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Since 2l/2/l = o(2l/2) indeed holds, we get that Conjecture 1 has actually already been proven for the case
t = l.

To further verify Conjecture 1, we performed experiments for small values of l (namely we computed the
smallest value of the subset size |Yi| for 1 ≤ i ≤ 2l/2/l), which will be reported in full version of the paper.

5.3 Improved universal forgery attacks

We present an improved universal forgery attack based on Conjecture 1. We divide M into two parts:
M1‖ · · · ‖M2s1 and M2s1+1‖ · · · ‖M2s with s1 ≤ s− 1.

1. (online) Recover the height value λ(Xi) of each Xi with 1 ≤ i ≤ 2s1 in the functional graph GfM . For
the interested reader, the exact procedure of this step is referred to [16]. For each Xi the complexity of
evaluating its height is O(2l/2).

2. (online) Find a pair of 1-block message (m,m′) with a birthday-like collision attack, such thatM1‖ · · · ‖M2s1 ‖m
and M1‖ · · · ‖M2s1‖m′ is a collision on the inner hash function. The complexity is upper-bounded by
O(2s1+l/2).
Moreover, it is important to notice that (m,m′) is a filter for all Xi with 1 ≤ i ≤ 2s1 as the relation
below holds:

f(f(· · · f(Xi,Mi+1) · · · ,M2s1 ),m) = f(f(· · · f(Xi,Mi+1) · · · ,M2s1 ),m′).

3. (offline) Use the same collection procedure with previous attacks [16] to select 2l−s1 nodes and obtain
their respective height in the functional graph GfM . However, in contrary to the previous attack, we
only store the nodes with height λ satisfying 0 ≤ λ ≤ 2l/2/l. Moreover, for each such height λ, we store
exactly 2l/2−s1 nodes in Y in the end. According to Conjecture 1, we just need to repeat the collection
procedure by at most a constant number of times. Thus, the complexity of this step is upper-bounded
by O(2l−s1). It is important to recall that we now know the height distribution for the selected nodes in
the set Y . More precisely, for each height λ such that 0 ≤ λ ≤ 2l/2/l hold, there are 2l/2−s1 nodes in Y
that have height λ.

4. (offline) Recover the value of some Xi by matching the elements between X and Y . In details, for each
Xi, if λ(Xi) ≤ 2l/2/l holds, then:

4.1 Obtain the elements in Y that have the height value λ(Xi). Let them be a subset of Y denoted as
Yλ(Xi). We know that |Yλ(Xi)| = 2l/2−s1 holds.

4.2 For each node y in Y with height λ(Xi), check if the following holds

f(f(· · · f(y,Mi+1) · · · ,M2s1 ),m) = f(f(· · · f(y,Mi+1) · · · ,M2s1 ),m′).

and if it does, then output the value of y as the value of Xi.

The complexity of this step for a single Xi is computed as (2s1 − i) · |Yλ(Xi)| = (2s1 − i) · 2l/2−s1 =

2l/2 − i · 2l/2−s1 and so the total complexity of this step is given by

2s1∑
i=1

(2l/2 − i · 2l/2−s1) = O(2s1+l/2)

5. (offline) Based on the knowledge of some intermediate hash value Xi, construct a second-preimage M′
of the challenge message M with respect to the inner hash function. Note that once Xi is known, the
following intermediate hash values Xj with i ≤ j ≤ 2s are also known. Then, previous generic second-
preimage attacks [10] can be applied to find M′ and the complexity is known to be upper-bounded by
O(2l−s).

6. (online) Query M′ to MAC and receive the tag T . Output T as the valid tag for the challenge message
M. The complexity of this step is obviously upper-bounded by the block length of M′, that is O(2s).
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Note that there are in total 2l−s1/l nodes in Y , and 2s1 intermediate hash values in X. So a collision
between an element in X and an element in Y occurs with a probability around 1/l. Thus, we need to repeat
the attack procedure Θ(l) times in order to increase the success probability to a constant value.

Now, we can eventually summarize the complexity of the entire universal forgery attack. We recall that
s1 ≤ s− 1.

Step 1: O(2s1+l/2) Step 2: O(2s1+l/2) Step 3: O(2l−s1)

Step 4: O(2s1+l/2) Step 5: O(2l−s) Step 6: O(2s)

• For the case 0 < s < l/4, the complexity is dominated by Step 3. Set s1 = s − 1 and then the total
complexity is upper-bounded by O(l · 2l−s).

• For the case l/4 ≤ s ≤ 3l/4, set s1 = l/4 to make the complexities at Steps 1 and 3 equal, which optimizes
the overall complexity. The complexity is upper-bounded by O(l · 23l/4).

• For the case s > 3l/4, set s1 = l/4, and the complexity is dominated by Step 6, which is upper-bounded
by O(l · 2s).

Overall, our attacks have significantly decreased the complexity of universal forgery attack on iterated hash-
based MACs from O(25l/6) (attack complexity in [16]) to O(23l/4) by ignoring the polynomial factors.

6 Time-Memory tradeoff for key recovery attacks

In this section, we discuss time-memory tradeoff for key recovery attacks on NMAC or for the equivalent
key recovery attacks on HMAC. To start with, it has been known that the complexity of the brute-force key
recovery attack can be reduced to 2l although the key size is 2l bits, by following a divide-and-conquer
approach. In short, the adversary firstly generates an inner collision, and then brute force recovers the inner
key by detecting if the collision can be reached for each key candidate. After the inner key is recovered, the
adversary moves to recover the outer key by using the trivial brute-force attack based on the knowledge
of the inner key. While this attack does not use any precomputation, surprisingly it is even more efficient
than the straightforward application of Hellman’s time-memory tradeoff [9], which uses 22l precomputation,
and for key recovery phase 24l/3 computations and 24l/3 memory. This motivates us to investigate if there
are more efficient time-memory tradeoff for the key recovery attacks on HMAC and NMAC with the usage of
precomputation.

In the following, we will present our new time-memory tradeoff. Roughly speaking, our tradeoff utilizes
both the divide-and-conquer approach and the Hellman’s time-memory tradeoff. With a precomputation, we
firstly recover the outer key Kout and then recover the inner key Kin. It is important to note that both of
the precomputation for Kout and Kin are performed before launching any key recovery attacks for Kout and
Kin.

6.1 Recovering Kout

Hellman’s tradeoff approach is not trivially applicable to recover Kout because the input from the inner hash
function is unknown due to the inner key. To overcome this problem, we preset the output of the inner hash
function to a constant Xe. Thanks to the recent internal state recovery attack on hash-based MAC [12] and
the second preimage attack on hash function [10], we can always successfully constructed a message which
will produce an output of the inner hash function, which is the fixed Xe.

The attack procedure is described as below.

Precomputation Phase
1. Randomly pick a chaining value X0 and iteratively compute Xi = fM (Xi−1) for i = 1, . . . , O(2l/2) while

storing all the Xi’s in a lookup table. Denote the final internal state value as Xe.
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2. Build Hellman’s precomputed lookup tables for the function fXe , i.e., the compression function with Xe

as the message block.

Key Recovery Phase
1. Recover the unknown internal state for a message m with O(2l/2) blocks using the technique from [12]

with 2l/2 time complexity and 2l/2 memory requirement.
2. Append m with an expandable message ME of range [l/2, l/2 + 2l/2 − 1].
3. Find a message block ML that links the expandable message to one of the precomputed Xi’s.
4. Query the MAC oracle with messageMq = m‖ME‖ML‖M‖ · · · ‖M to obtain the tag T , where ME ’s length

is chosen in the way that the overall length of Mq becomes O(2l/2). Note that we shall choose the last
block M so that Mq is already a valid padded message, and this messageMq ensures that the output of
the inner layer will be Xe.

5. Use T as the input of Hellman’s key recovery phase to recover Kout.

In this attack, the first step of the precomputation phase and the second and third steps of the key
recovery phase are essentially performed to find a second-preimage of the hash function for the given message
M‖ · · · ‖M with prefix m, with length 2l/3 and with the initial value changed to X0. The entire process costs
22l/3 computation and 2l/3 memory. The second step of the precomputation phase and the fifth step of the
key recovery phase are exactly Hellman’s tradeoff costing 2l precomputation, and 22l/3 online computations
and memory. Overall, Kout can be recovered with 22l/3 time and 22l/3 memory (both dominated by the fifth
step) with 2l precomputation.

6.2 Recovering Kin

Our time-memory tradeoff for recovering Kin is based on the height of nodes in the functional graph. In
short, during the precomputation phase, we collect a set of nodes in a functional graph GfM with a certain
pattern of heights. Then during the key recovery phase, we first recover the height of Kin in GfM following
the procedure in [16], then derive a set of nodes, which have the same height with Kin, from the collected
nodes of the prcomputation phase, and checks if Kin is inside these nodes or not. Moreover, we need to
utilize more than one functional graph in order to amplify the success probability to a constant value.

The attack procedure is described as below.

Precomputation Phase
1. Randomly pick an internal state value X0 and iteratively compute Xj = fMi

(Xj−1) until some Xj collides
with a previous one. This allows to deduce the height of X0 in the functional graph GfMi . Store in table

Ti the pair (Xj , λ(Xj)) with λ(Xj) being a multiple of 2l/4 and λ(Xj) < 2l/2/l (omit if the pair is already
in Ti). Repeat the process for 2l/4 random X0 and sort the table Ti according to the heights, and save
the final Ti together with Mi.

2. Repeat the process for random Mi so as to obtain l × 2l/4 structures of (Ti,Mi)’s.

Key Recovery Phase
1. Obtain the height of Kin using the technique from [16] using the functional graph GfMi . Let λ be the

smallest multiple of 2l/4 greater than λ(Kin). Retrieve all Xj ’s whose height in GfMi is equal to λ. Test

if fλ−λ(Kin)(Xj) is the correct guess of Kin for all Xj in the collection of Ti. Repeat for all Mi until Kin

is recovered.

Following Conjecture 1, in the range that interests us (i.e., [1, 2l/2/l]), there will be Θ(2l/4) nodes with
the same height collected in each table. Since the overall number of nodes at each height of interest is O(2l/2),
the chance for a collision to happen at each height is o(2−l/4 = 2l/4/2l/2), and we covered 1/l portion of all
possible nodes, so the chance to find a match in one table is o(l−1 ·2−l/4). Since there are l ·2l/4 independent
tables, our key recovery phase will be successful with a non-negligible probability. The time and memory
complexity for this attack is eventually 23l/4 with 2l precomputation.
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7 Conclusion

In this paper, we presented selective forgery attacks, improved universal forgery attacks, and time-memory
tradeoff for key recovery attacks against the most popular MAC constructions built upon iterative hash
functions, such as HMAC and NMAC. Our cryptanalysis methods are based on the extension of various techniques
including expandable messages, second-preimage attack, functional graph-based forgery attacks, etc. Our
work provides the community with a better understanding of the security margin of iterative hash-based
MACs.
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