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What is hash

A typical order of corned beef hash,
hashed with potatoes and carrots, or
‘groestl’.

Cryptographic hash functions:

arbitrary bit string h−→ fixed length string
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Applications

digitial signature

data integrity, checksum

message authetication code

random number generators

digital forensics

and more ...



Required Properties

collision resistance.
It should be computationally difficult to
find x , x ′ s.t. x 6= x ′ and h(x) = h(x ′). — 2n/2

preimage resistance.
Given h(x) (not x), find x ′ s.t. h(x) = h(x ′). — 2n

second preimage resistance.
Given m, find m′ s.t. m 6= m′ and h(m) = h(m′). — 2n−k

pseudo-randomness.
h(key , ·) should look like a random oracle.

Unpredictability.
predict h(key , x) for unqueried x ’s

Indifferentiability.
find “related” sets of input/output values.

software/hardware efficiency

and more ....
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Expectations from Hash Functions

egg producing, wool providing, milk giving, pig



Recent Events in Hash Functions

MD5 and SHA-1 were broken by Wang et al. in 2005.

In response, on 3rd March 2006, NIST recommended
using SHA-2 from 2010.

SHA-2 follows similar design principle of SHA-1, call for
SHA-3 on 2nd Nov 2007.
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The SHA-3 Competition

2007/11/02: call for submissions.
2008/10/31: submission deadline, 64 received.
2008/12/09: 51/64 were selected for Round 1.

2009/02/25-28: 1st SHA-3 conference, KULeuven.

2009/07/24: 14/51 were selected for Round 2.

2010/08/23-24: 2nd SHA-3 conference, UCSB.

2010/12/10: 5/14 were selected for Round 3.

2012/03/22-23: 3rd SHA-3 conference, Washington.

2012/10/03: announcement of winner – KECCAK.
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Compression Function Constructions

block size based, e.g., H ′ = EK (H)⊕ H, MD5, SHA-1,
SHA-2

hard problem based — the security of the hash function
can be reduced to some hard mathematical problem, e.g.,
VSH, SWIFFT

permutation based, e.g., KECCAK, JH
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The Sponge Construction

f : a permutation; r : message rate, i.e., bit size for each
message block; c: capacity; zi : hash outputs;

A sponge function is indifferentiable from a random oracle if
the permutation is ideal.
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The KECCAK Sponge hash function family

one 1600-bit permutation

specified 224,256,384,512 bit outputs, and ideally
supports all output sizes.

ARX (Addition-Rotation-Xor) design with 5-bit ‘ARX sbox’

24 rounds with identical round function up to a difference of
constant addition.
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24 rounds, each consists of ι ◦ χ ◦ π ◦ ρ ◦ θ
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a[x][y][z] = a[x][y][z] +
∑

a[x-1][·][z] +
∑

a[x+1][·][z-1]
provides inter-slice diffusion, linear
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The KECCAK round function

ι ◦ χ ◦ π ◦ ρ ◦ θ

the only non-linear layer, can be viewed as 5-bit sbox



The KECCAK round function

ι ◦ χ ◦ π ◦ ρ ◦ θ

ι: adding a round dependent constant to the first lane, to
distinguish each round, and resists slide attack etc. Not
essential for differential path

Overall: we can write ι ◦ χ ◦ (π ◦ ρ ◦ θ) as ι ◦ χ ◦ λ, and consider
only χ ◦ λ for differential paths.
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Building High Probability Differential Path

θ : a[x ][y ][z] =
a[x ][y ][z] +

∑4
y=0 a[x − 1][y ][z] +

∑4
y=0 a[x + 1][y ][z − 1]

Properties: θ propagates the differences slowly, i.e., one bit
affects at most 11 other bits; however one bit difference θ−1

affects half of the state, around 800 bits.

Furthermore, if we can keep even number (0, 2, 4) of difference
bits in each column, then the

∑
terms can be removed, and θ

acts like identity. This is called column parity kernel (CPK).

Keep the differential path in the CPK as much as possible! This
is possible for at most 3 rounds of KECCAK.

aiming for a differential path with 7 rounds like:
3R −→ R ←− 3R.
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Unaligned Rebound Attack to KECCAK

differential path for each side is of 3 rounds.
generate lots of differential paths independently from both
sides, then find a possible difference match in the middle
once a difference match is found, generate all possible
solution, and find one confines the differential path in both
sides.

By carefully examine the tradeoff between differential
probability and number of differential paths possible, we
obtained 7-round differential path with complexity 2491.5.
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Limited Birthday Distinguishers

Given a set of input difference ∆in with size IN and a set of
output difference ∆out with size OUT , a bijective function f with
b bits, the complexity to find a pair (x , x ′), such that
x ⊕ x ′ ∈ ∆in and f (x)⊕ f (x ′) ∈ ∆out , is
max{

√
2b/IN,

√
2b/OUT ,2b/(IN ·OUT )}.

If an algorithm finds such a pair faster, we call it a distinguisher.



Application to KECCAK

BACKWARD

DIFFERENTIAL PATH
IN OUT

FORWARD

DIFFERENTIAL PATH

INBOUND

c©Thomas Peyrin

Complexity 2491.5

IN ≤ 2128.4, OUT ≤ 2414, generic limited birthday attack
comes with complexity 21057.6.
hence distinguisher for 8 rounds.
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Attack Comparisons
J.-P. Aumasson et al. (2009):
zero-sum distinguishers up to 16 rounds of KECCAK-1600
internal permutation with complexity 21024.

P. Morawiecki and M. Srebrny (2010):
preimage attack using SAT solvers, 3 rounds.

D. Bernstein (2010):
(second)-preimage attack on 8 rounds with complexity
2511.5 and 2508 bits of memory, using low algebraic degree.

C. Boura et al. (2010-2011):
zero-sum partitions distinguishers to the full 24-round
version of KECCAK-1600 internal permutation with
complexity 21590, using low algebriac degree. Improved by
Duan and Lai in 2012 to 21575.

I. Dinur (2012): 4-round collision and 5-round near collision
for KECCAK-224 and KECCAK-256.

Ours (2012): 8-round distinguisher with complexity 2491.5.



End of Talk

Thank you!

Questions?
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