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Abstract. Collision resistance is a fundamental property required for cryptographic hash functions.
One way to ensure collision resistance is to use hash functions based on public key cryptography (PKC)
which reduces collision resistance to a hard mathematical problem, but such primitives are usually slow.
A more practical approach is to use symmetric-key design techniques which lead to faster schemes, but
collision resistance can only be heuristically inferred from the best probability of a single differential
characteristic path. We propose a new hash function design with variable hash output sizes of 128,
256, and 512 bits, that reduces this gap. Due to its inherent Substitution-Permutation Network (SPN)
structure and JH mode of operation, we are able to compute its differential collision probability using
the concept of differentials. Namely, for each possible input differences, we take into account all the
differential paths leading to a collision and this enables us to prove that our hash function is secure
against a differential collision attack using a single input difference. None of the SHA-3 finalists could
prove such a resistance. At the same time, our hash function design is secure against pre-image, second
pre-image and rebound attacks, and is faster than PKC-based hashes. Part of our design includes a
generalization of the optimal diffusion used in the classical wide-trail SPN construction from Daemen
and Rijmen, which leads to near-optimal differential bounds when applied to non-square byte arrays.
We also found a novel way to use parallel copies of a serial matrix over the finite field GF (24), so as to
create lightweight and secure byte-based diffusion for our design. Overall, we obtain hash functions that
are fast in software, very lightweight in hardware (about 4625 GE for the 256-bit hash output) and that
provide much stronger security proofs regarding collision resistance than any of the SHA-3 finalists.
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1 Introduction

For current hash function designs, there are mainly two approaches to obtain provable security. The first
approach is to prove collision and/or preimage resistance in relation to hard problems. For instance, Contini
et al.’s very smooth hash (VSH) [15] is a number-theoretic hash for which finding a collision can be proven to be
equivalent to solving the VSSH problem of the same order of magnitude as integer factorization. Concerning
preimage, an example is MQ-HASH [9] for which finding a preimage is proven to be as hard as solving a
multivariate system of equations. For the SHA-3 candidate FSB [1], finding collisions or preimages imply
solving syndrome decoding. The second approach is more practical and less rigorous, and aims at proving
a good differential probability bound for a single characteristic path. However, collision resistance is only
heuristically inferred from this bound.

The first approach accomplishes more than a proof of resistance to differential cryptanalyis. However, hash
function schemes based on this design strategy often suffer significantly in terms of speed and performance.
On the other hand, schemes using the second approach enjoy faster speeds but suffer from incomplete proof
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of collision resistance. In this paper, we seek to reduce the gap between these two approaches by providing a
more powerful proof for collision resistance while maintaining similar speed as compared to the symmetric-key
design hashes.

Here, we recall that a differential characteristic over a composed mapping consists of a sequence of difference
patterns such that the output difference from one round corresponds to the input difference in the next round.
On the other hand, a differential is the set of all differential characteristics with the same first-round input
and last-round output differences. Most hash function designs only aim at showing that any single differential
characteristic has sufficiently low probability and heuristically infer collision resistance from this. Examples of
hash functions which adopt this approach include hashes such as WHIRLPOOL [26] and some SHA-3 finalists like
GRØSTL [20] and JH [35]. In addition, this differential characteristic bound is hard to determine for Addition-
Rotation-XOR (ARX) designs such as BLAKE [3] and SKEIN [19]. Therefore, the next step in collision resistance
proof, as already done by the second-round SHA-3 candidate ECHO [5], is to give a bound on the best differential
probability instead of only the best differential characteristic probability. However, note that this security
argument only takes into account attackers that limit themselves to a fixed colliding differential (i.e. with a
fixed output difference of the internal permutation), while many exist.

Our proposal for a new hash function design is able to achieve a stronger differential collision resistance
proof. For example, for our proposed 512-bit hash, we prove that the differential probability of 4 rounds of its
internal permutation function, which has a 1024-bit state size, is upper bounded by 2−816. We sum this upper
bound over all output differences that lead to a collision (2512 candidates) in order to find that the
differential collision probability of our proposed hash is then upper bounded by 2−304 < 2−256 after the final
truncation. In contrast, for the SHA-3 semi-finalist ECHO [5], the maximal expected differential probability for
four rounds of their 2048-bit AES extension, ECHO.AES, is 1.055×2−452, but summing over all possible colliding
output difference masks (at least 21536 candidates) completely prevents such a collision-resistance argument.
For SHA-3 finalist, GRØSTL, it is easy to compute the internal collision probability of its compression function
f . However, its output transformation, involving a permutation P followed by a truncation, makes such a
derivation much less straightforward for the external collision probability of the full GRØSTL hash function.

In addition, we have to consider that for some hash function constructions, it is necessary to prove low
related-key differential probability instead of just low fixed-key differential probability. For example, consider
the Davies-Meyer compression function instantiated with AES. The main AES cipher has very low differential
characteristic probability which is bounded by 2−150 for every four rounds. However, in the Davies-Meyer
mode, each input message block to the hash corresponds to the cipher key of the AES-based compression
function. This makes the compression function vulnerable to the multicollision attack by Biryukov et al. [10],
because AES does not have good resistance against related-key differential attack.

1.1 Our Contributions

In this paper, we propose a new hash function design, SPN-Hash, with variable output sizes of 128, 256,
and 512 bits. It is specially constructed to circumvent the weaknesses in the proofs of differential collision
resistance as well as to resist common attacks against hash functions.

Concerning the internal permutations, we use the Substitution-Permutation Network (SPN) structure as
the building block for SPN-Hash to ensure that the maximum probability taken over all differentials (not
only differential characteristics) will be low enough. In [30], Park et al. presented an upper bound for the
maximum differential probability for two rounds of an SPN structure, where the linear transformation can
have any value as its branch number. This bound is found to be low for SPN structures. For instance, the
maximum differential probability for four rounds of AES is bounded by 1.144×2−111. Based on Park’s result, we
deduce an upper bound for the differential collision probability of SPN-Hash. We use this bound to show that
our hash functions are secure against a differential collision attack. Furthermore for our internal permutations,
we need to consider non-square byte-arrays of size m × n where m 6= n. The designers of AES [17] gave a
construction for m × n arrays where m < n using optimal diffusion maps, but the differential bound is the
same as that of an m × m array, which is sub-optimal for mn-byte block size. By their method, a 256-bit
permutation would be constructed by a 4 × 8 byte-array that has the same differential bound 1.144× 2−111

as a 4× 4 byte-array. This is not close enough to 2−blocksize = 2−256 for our security proof. We generalize
the optimal diffusion map of [17] to construct m×n byte-arrays where m > n, which can achieve
near optimal differential bound close to 2−blocksize.

We also analyzed the security of our internal permutations against the latest rebound-like attacks [32].
More precisely, we present distinguishing attacks on three versions of the internal permutation P for 8 out of
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10 rounds. For the 256-bit permutation P , the 8-round attack requires time 256 and memory 216. For the 512-
bit permutation P , the 8-round attack requires time 256 and memory 28, while for the 1024-bit permutation
P , the 8-round attack requires time 288 and memory 216.

Concerning the operating mode, we use the JH mode of operation [35], a variant of the Sponge construc-
tion [6]. In this design, assuming a block size of 2x bits, each x-bit input message block is XORed with the first
half of the state. A permutation function P is applied, and the same message block is XORed with the second
half of P ’s output. For this construction, the message blocks are mapped directly into the main permutation
block structure instead of via a key schedule. This eliminates the need to consider related-key differ-
entials when analyzing protection against collision attacks. Furthermore, the JH mode of operation
is able to provide second preimage resistance of up to 2x bits for an x-bit hash as compared to only 2x/2 for
the Sponge construction with the same capacity.

To summarize, our SPN-Hash functions use AES-based internal permutations with fixed-key and a gen-
eralized optimal diffusion to ensure low and provable maximum differential probability. Then our JH-based
operating mode allows us to apply directly our security reasoning and obtain a bound on the maximum prob-
ability of an attacker looking for collisions using a fixed input difference. To the best of our knowledge, this
is the only known function so far that provides such a security argument.

The performances of SPN-Hash are good since the internal permutation is very similar to the one used
in the SHA-3 finalist GRØSTL. We propose a novel construction to use parallel copies of the PHOTON

8 × 8 serialized MDS matrix over GF (24) from [22], to create a secure and very lightweight
byte-based diffusion for our design in hardware.5 Moreover, the area of SPN-Hash is also lowered by
the relatively small internal memory required by the JH mode of operation. Hardware implementations require
4625 GE for 256-bit hash output, while current best results for the SHA-3 competition finalists require 10000
GE or more. Overall, our proposal achieves both excellent software speed and compact lightweight
implementations.

Our paper is organized as follows: We state some necessary preliminaries concerning differential crypt-
analysis in Section 2. Then we describe our proposed SPN-Hash design and give instantiations of 128-, 256-,
and 512-bit SPN-Hash in Section 3 before proceeding to provable security against differential collision attacks
in Section 4. Section 5 is devoted to analysing the security of our hash function against preimage, second
preimage, and rebound attacks and finally in Section 6, we show some performance comparisons.

2 Preliminaries

Substitution Permutation Network. One round of an SPN structure consists of three layers: key addi-
tion, substitution, and linear transformation. In the key addition layer, a round subkey is XORed with the
input state. The substitution layer is made up of small non-linear substitutions called S-boxes implemented
in parallel. The linear transformation layer is used to provide a good spreading effect of the cryptographic
characteristics in the substitution layer. As such, the SPN structure has good confusion and diffusion proper-
ties [33]. One round of the SPN structure is shown in Figure 1 in Appendix A.

Maximum differential probability of an S-Box. In this paper, we follow the standard definitions
related to differential cryptanalysis, such as those in [17]. We take all S-boxes to be bijections from GF (2s)
to itself. Consider an SPN structure with an st-bit round function. Let each S-box Si be an s-bit to s-bit
bijective function Si : GF (2s)→ GF (2s), (1 ≤ i ≤ t). So the S-box layer consists of t s-bit S-boxes in parallel.

Definition 1. For any given ∆x,∆y ∈ GF (2s), the differential probability of each Si is defined as

DPSi(∆x,∆y) =
#{x ∈ GF (2s) | Si(x) ⊕ Si(x ⊕∆x) = ∆y}

2s
,

where we consider ∆x to be the input difference and ∆y the output difference.

Definition 2. The maximal differential probability of Si is defined as

DP ((Si)max) =
max

∆x 6=0,∆y DPSi(∆x,∆y).

5Note that the approach of [22] to do an exhaustive search for serialized MDS matrix over GF (28) by MAGMA is
only feasible for n× n matrix up to size n = 6. Therefore we need our current approach to construct serailized 8× 8
matrix over GF (28).
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Definition 3. The maximal value of DP ((Si)max) for 1 ≤ i ≤ t is defined as

p =
max
1≤i≤t (DP (Si)max).

An S-Box Si is strong against differential cryptanalysis if DP ((Si)max) is low enough, while a substitution
layer is strong if p is low enough.

A differentially active S-box is an S-box having a non-zero input difference. A differentially active S-box
always has a non-zero output difference and vice versa. In order to evaluate security against differential crypt-
analysis, other than the differential probabilities of the S-box or S-box layer, one also has to consider the
number of active S-boxes whose value is determined by the linear transformation layer.

Substitution-Diffusion-Substitution function. In order to ease the analysis of the SPN structure, we
define an SDS (Substitution-Diffusion-Substitution) function as shown in Figure 2. Let the linear transforma-
tion layer of the SDS function be defined by L, its input difference by ∆x = x⊕ x∗, its output difference by
∆y = y⊕ y∗ = L(x)⊕L(x∗). If L is linear, we have ∆y = L(∆x). The number of differentially active S-boxes
on the input/output of the SDS function is given by the branch number of the linear transformation layer.

Definition 4. The branch number of a linear transformation layer L is defined as

βd = min
v 6=0
{wt(v) + wt(L(v))},

where the wt(x) is the number of non-zero s-bit characters in x.

If we want to find the number of active S-boxes in two consective rounds of the SPN structure, we only
need to consider the SDS function. βd gives a lower bound on the number of active S-boxes in two consecutive
rounds of a differential characteristic approximation.

Definition 5. A linear transformation layer on t elements is maximal distance separable (MDS) if βd = t+1.

Maximum differential probability of an SPN. The differential probability, which is the sum of all
differential characteristic probabilities with the same input and output difference, gives a more accurate
estimate of resistance against differential cryptanalysis (than that of a single characteristic path). In [30], Park
et al. proved an upper bound for the maximum differential probability for 2 rounds of the SPN structure.

Theorem 1 [30, Theorem 1] Let L be the linear transformation of an SPN structure and βd be the branch
number of L from the viewpoint of differential cryptanalysis. Then the maximum differential probability for 2
rounds of the SPN structure is bounded by

max

{

max
1≤i≤t

max
1≤u≤2s−1

2s−1
∑

j=1

{DPSi(u, j)}βd , max
1≤i≤t

max
1≤u≤2s−1

2s−1
∑

j=1

{DPSi(j, u)}βd

}

.

As a consequence, we get the following theorem.

Theorem 2 [30, Corollary 1] Let L be the linear transformation of an SPN structure and βd be the branch
number of L from the viewpoint of differential cryptanalysis. Then the maximum differential probability for 2
rounds of the SPN structure is bounded by pβd−1, where p is the maximal value of DP ((Si)max) for 1 ≤ i ≤ t.

3 The SPN-Hash functions

In this section we describe our proposed hash function design, SPN-Hash , with variable hash output sizes
of 128, 256, and 512 bits. We adopt the JH mode of operation [35], a variant of the Sponge construction [6],
operating on a state of b = r + c bits. b is called the width, r the rate, and c the capacity. Our design is a
simple iterated construction based on a fixed-length unkeyed permutation P , where r = c. The internal state
of P can be represented by an n×m matrix of 8-bit cells, where n is the number of bytes in a bundle, and
m is the number of bundles. Thus, P operates on a width of b = 8nm bits, the rate and capacity are 4nm-bit
each, and the output is a 4nm-bit hash value.
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Firstly, the input message x of length N bits is padded and divided into blocks of r = 4nm bits each.
The padding function produces the padded message, x′, of length a multiple of 4nm. It follows “Padding
Method 2” in [29, Algorithm 9.30]: first append the bit ‘1’ to x, followed by a sequence of z = (−N − 2nm− 1
mod 4nm) ‘0’ bits. Finally, append the 2nm-bit representation of l = (N + z + 2nm+ 1)/4nm. The integer l
represents the number of message blocks in the padded message x′. The maximum message length for 4nm-bit
SPN-Hash is thus set as 4nm · (22nm − 1)− 2nm− 1.

Then, all the bits of the state are initialized to the value of an Initialization Vector (IV). The IV of 4nm-
bit SPN-Hash is taken to be the 8nm-bit binary representation of 4nm. That is, in big-endian notation, the
IVs are 0x00 . . . 0080 for 128-bit SPN-Hash , 0x00 . . .0100 for 256-bit SPN-Hash, and 0x00 . . .0200 for 512-bit
SPN-Hash .

For each padded message block, the JH mode of operation iteratively XORs the incoming 4nm-bit input
message block Mi into the left half of the state, applies the permutation P : GF (2)8nm → GF (2)8nm to the
internal state and XORs Mi into its right half. After all the message blocks have been processed, the right half
of the last internal state value is the final message digest and therefore our construction produces a 4nm-bit
hash. It is summarized as follows:

Padded Input = M0,M1, . . . ,MN−1

(H0,L, H0,R) = IV

For i = 0 to N − 1:

(Hi+1,L, Hi+1,R) = P ((Mi ⊕Hi,L, Hi,R))⊕ (0,Mi)

Hash = HN,R

where Mi ∈ GF (2)4nm, (Hi,L, Hi,R) ∈ GF (2)8nm and N is the total number of padded message blocks. A
diagram of our JH mode of operation is shown in Figure 3 in Appendix A.

Using appropriate parameters m and n such that m is even and m divides n, we will be able to construct
a wide range of hash functions of different output sizes:

128-bit SPN-Hash : m = 4, n = 8
256-bit SPN-Hash : m = 8, n = 8
512-bit SPN-Hash : m = 8, n = 16

3.1 The Internal Permutation P

The 8nm-bit permutation P iterates a round function for 10 rounds. Its internal state can be represented by
an n×m matrix of 8-bit cells, where n is the number of bytes in a bundle, and m is the number of bundles.
Here, each column can be viewed as a bundle consisting of n bytes. In each round, there is a substitution layer,
followed by an MDS layer, a generalized optimal diffusion layer, and lastly, an XOR with a round constant.
Thus, the linear transformation layer of the SPN structure introduced in Section 2 is actually a composition
of the MDS layer and the generalized optimal diffusion layer while the “round keys” of the SPN structure are
taken to be the round dependant constants. A diagram of the permutation function P is shown in Figure 4
in Appendix A.

The substitution layer σ takes in a 8nm-bit input and splits it into nm bytes. It then applies the AES

8-bit S-box [17] to each of these bytes in parallel. This is chosen due to its low maximum differential and
linear approximation probabilities of 2−6, which strengthens resistance against differential and linear attacks.
In hardware, it is possible to achieve a very compact implementation of the AES S-box using “tower-field”
arithmetic, as proposed in [13]. In software, one could use the Intel AES-NI instruction set [16] for efficient
implementation.

The MDS layer θ combines consecutive n bytes into bundles and applies on each of these m bundles an
MDS transformation described in Section 3.3.

The generalized optimal diffusion layer π is a permutation of bytes that achieves good spreading effect.
It is an instantiation of the generalized optimal diffusion which we define in Section 3.2. We write this layer
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π as (π1, π2, . . . , πn), where 0 ≤ πi ≤ m − 1. This notation indicates that row i is rotated by πi positions to
the left:

128-bit SPN-Hash: π = (0, 0, 1, 1, 2, 2, 3, 3)
256-bit SPN-Hash: π = (0, 1, 2, 3, 4, 5, 6, 7)
512-bit SPN-Hash: π = (0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7)

These byte permutations are indeed generalized optimal diffusions since exactly n/m bytes from each
column is sent to each of the m columns.

The round constant RConi that is XOR-ed with the state is different for every round i. This is to defend
against slide attacks [11, 12] and to prevent fixed points present over reduced rounds from being propagated
to the entire permutation P . Each RConi can be viewed as an n × m matrix A, where Ax,y (0 ≤ x < n,
0 ≤ y < m) denotes the entry in row x and column y. Then for RConi used in round i,

Ax,y =

{

y ⊕ i if x = 0
0 otherwise,

where i is the round number viewed as an 8-bit value. These values of round constants are chosen as they are
light in hardware.

3.2 Generalized Optimal Diffusion

Definition 6. Generalized Optimal Diffusion: Let m divide n. We consider a concatenation of n bytes as a
bundle and we consider a concatenation of m bundles as a block. A linear transform, π, mapping a block of
m bundles to m bundles is called a (m,n)-generalized optimal diffusion if for each input bundle of a block,
n/m bytes of that input bundle is mapped to each of the m output bundles.

Our (m,n)-generalized optimal diffusion is a generalization of the optimal diffusion layer used in the wide-
trail strategy of Rijmen and Daemen [17]. The latter corresponds to the case m = n and the ShiftRows
function in AES is a particular instantiation of it. For our hash function design, m must be even and m must
divide n.

The following two results compute the maximum differential probability of SPN-Hash. Their proofs can be
found in Appendix B.

Theorem 3 Let θ : [GF (28)n]m → [GF (28)n]m be an MDS layer formed by concatenating m n × n MDS
transforms over GF (28). Let π : [GF (28)n]m → [GF (28)n]m be a (m,n)-generalized optimal diffusion mapping
m bundles to m bundles. Then π ◦ θ ◦ π is a m×m MDS transform over GF (28n).

Theorem 4 The probability of any non-zero input-output differential for the internal permutation P described
in Section 3.1 is upper bounded by

(

126× (2−7)n+1 + (2−6)n+1
)m

.

3.3 MDS Layer

The MDS layer provides an independent linear mixing of each column. In the following, we describe the mixing
function of each column and show that it is indeed an MDS transform.

128- and 256-bit SPN-Hash. In [22], the authors proposed a method for generating the 8×8 MDS transform
over GF (24) in a serial way that is very compact. However, it is difficult to find an 8×8 serialized MDS matrix
over GF (28) using the exhaustive search method of [22]. Thus, we show here a way to construct such a matrix
using two parallel copies of the PHOTON 8 × 8 serialized MDS matrix6 over GF (24) [22, Appendix C]. This
method of construction, similar to the one used for the MDS layer of ECHO [5], produces an MDS transform
that is very lightweight as compared to, for example, the 8× 8 matrices7 over GF (28) used in WHIRLPOOL [4]
or GRØSTL [20].

6We use PHOTON ’s serialized matrix as we verified that it has the lowest binary weight over GF (24).
7A comparison of their hardware estimations can be found in Section 6.2.
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In what follows, we describe this MDS transform for 128- and 256-bit SPN-Hash. Label the 8 bytes in each
column as a1, a2, . . . , a8. We may write each byte as a concatenation of two 4-bit values, ai = aLi ‖ a

R
i . Let

aL = (aL1 , a
L
2 , . . . , a

L
8 ) and aR = (aR1 , a

R
2 , . . . , a

R
8 ). Let Q be the 8 × 8 MDS matrix over GF (24) used in the

PHOTON [22, Appendix C] hash function, i.e.

Q = (A256)
8 =

























0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
2 4 2 11 2 8 5 6

























8

=

























2 4 2 11 2 8 5 6
12 9 8 13 7 7 5 2
4 4 13 13 9 4 13 9
1 6 5 1 12 13 15 14
15 12 9 13 14 5 14 13
9 14 5 15 4 12 9 6
12 2 2 10 3 1 1 14
15 1 13 10 5 10 2 3

























The matrix Q is chosen as it can be implemented with a very low area footprint in hardware. This is due to
the shifting property of A which simply updates the last cell of the column vector with a linear combination
of all the vector components, and then rotates the vector by one position towards the top. The MDS layer
is thus composed of 8 applications of A to the input column vector. This allows reuse of existing memory
without need for temporary storage or additional control logic. Furthermore, the hash function using Q can be
implemented efficiently in software using precomputed tables that combine the S-box and matrix coefficients.

We compute bL = Q · aL = (bL1 , b
L
2 , . . . , b

L
8 ) and bR = Q · aR = (bR1 , b

R
2 , . . . , b

R
8 ). For field multiplication

over GF (24), the irreducible polynomial x4 + x + 1 is chosen with compactness as the main criterion. Then
the output of the local diffusion layer is taken to be (b1, b2, . . . , b8), where each bi is a concatenation of the
two 4-bit values, bi = bLi ‖ b

R
i .

It can be shown that this transform is indeed MDS over GF (28). Suppose the input a is non-zero. Then
at least one of aL or aR is non-zero. Without loss of generality, suppose aL is non-zero. Since Q is MDS, this
means that the number of non-zero 4-bit values in (aL, bL) is at least 9. Hence, the number of non-zero bytes
in (a, b) is at least 9.

512-bit SPN-Hash. The choice of matrix for the 16× 16 MDS is left open to the reader. One possibility is to
use the matrix proposed by Nakahara et al. in [25]. Note that Nakahara et al.’s matrix may not be lightweight
due to its large size necessitating a large number of primitive operations. However, this is not an issue since
it is unlikely that a 512-bit hash function will be used for lightweight purposes.

4 Provable Security of SPN-Hash Against Differential Collision Attack

Suppose an adversary wants a nonlinear component such as an S-box to have a specified input-output dif-
ferential, (∆input, ∆output), in a differential attack on a block cipher. He can always choose a pair of input
messages, (x, x′), which satisfies the input difference x ⊕ x′ = ∆input. However, he cannot ensure this will
result in the output difference S(x⊕k)⊕S(x′⊕k) = ∆output since he does not know the secret key k. Therefore
the differential path is satisfied only with a certain probability.

However, there is no key in a hash function. Thus the adversary can choose a pair of input (x, x′) cor-
responding to the message bits such that x ⊕ x′ = ∆input and S(x) ⊕ S(x′) = ∆output with probability 1
(as long as a solution exists). He can easily perform this process to bypass as many S-boxes as he can, all
with probability 1, as long as the message bits corresponding to the input differentials of these S-boxes are
independent of each other. Usually, this simple freedom degrees fixing method can be carried on to only a
few rounds of the hash function (the controlled rounds), depending on the quality of diffusion of the internal
components. Indeed, this process to bypass S-boxes for free becomes harder or impossible to execute in later
rounds of the hash function since it is not easy to control message bits to satisfy several nonlinear equations
simultaneously. As a consequence, after a few controlled rounds, the attacker has to let the S-box differentials
happen probabilistically as in a block cipher differential attack for the remaining rounds of the function (the
uncontrolled rounds).

Therefore, the optimal setting for a classical collision attack against a hash function is to consider dif-
ferential characteristics for the controlled rounds and differentials for the uncontrolled rounds. As explained
above, the differential characteristic is usually satisfied with low complexity in the controlled rounds where
the attacker will be able to exploit freedom degrees (i.e. the number of independent binary variables he has to
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determine). On the other hand, he considers differentials in the uncontrolled rounds which are fulfilled only
probabilistically since the freedom degrees have already been fixed in the controlled rounds.

While some hash functions such as ECHO [5] do provide upper bounds on the maximum differential prob-
ability for a certain number of rounds, one has to note that an attacker could leverage the fact that several
output differences may lead to a collision. The attacker then maximizes its probability to find a collision by
considering differential characteristics for the controlled rounds and all differentials that lead to a collision
for the uncontrolled rounds. As a consequence, for a sharper estimation of the collision resistance of a hash
function, one has to sum the maximum differential probability bound over all the possible colliding output
differences. To the best of our knowledge, no known hash function has yet provided such a collision resistance
proof.

Looking at the SHA-3 competition candidates, such a proof seems hard to get. First, for most of the ARX
(Addition-Rotation-XOR) functions submitted such as BLAKE [3] and SKEIN [19], obtaining a good maximum
differential probability upper bound is really hard and remains an open problem. Even some SPN functions
such as JH [35] could not provide any interesting bound regarding this criteria, due to its highly nested
structure. On the other hand, ECHO [5] designers could prove that the maximum differential probability for
four rounds of its internal permutation is upper bounded by 1.055 × 2−452. However, for any of the ECHO

variants, the number of colliding output differences is at least 21536, rendering such a proof impossible to
apply.

The GRØSTL [20] hash function processes l-bit message blocks, m1, . . . ,mt, as hi ← f(hi−1,mi) for i =
1, . . . , t, where h0 = IV . The compression function f is given by f(h,m) = P (h⊕m)⊕Q(m)⊕h, where P and
Q are two different l-bit permutations. Thus, f maps two l-bit inputs to an l-bit output. After the last message
block has been processed, an output transformationΩ is applied, where Ω is given by Ω(x) = truncn(P (x)⊕x)
for an n-bit hash. Note that l, the size of the chaining value, shall always be at least twice the size of the hash
output. It is easy to check that the internal differential collision probability of f is less than the birthday bound.
However, the output transformation, involving a permutation followed by truncation of the last block, makes
such a derivation much less straightforward for the external collision probability of the full hash function. Till
now, there have been no published results on the differential collision probability of GRØSTL.

We show in the following that SPN-Hash can provide good maximum differential probability upper bounds
for 4 rounds of its internal permutation and that its operating mode allows us to go further to prove that the
sum of all colliding differential probabilities is still much lower than what an attacker would get with a generic
birthday collision attack. We note that among the PHOTON [22] family of ciphers, our proof can only apply to
the variant which uses the 288-bit internal permutation P288 involving 8-bit S-boxes. The other 4 members of
the family use 4-bit S-boxes in their internal permutations which do not give low enough differential bounds
after truncation.

4.1 Collision Resistance Analysis of the General SPN-Hash Construction

For our SPN-Hash construction, we make the extremely conservative estimate that the number of uncontrolled
rounds is at least 4, which means that the adversary will run out of freedom degrees after six rounds or less,
and he will not be able to control intermediate differentials in subsequent rounds. Note that the currently
best known freedom degree utilizations for AES-like primitives, the rebound attack [28] and its variants [27,
21, 32] allow us to control three rounds only.

Let ∆Input denote the input differential and ∆Output be the output differential of the 4 last rounds of
the SPN-Hash internal permutation. A collision for the hash function can occur either by an internal collision
(a collision on the full 8nm-bit internal state) or by an external collision during the last iteration (a collision
on the right side of the 8nm-bit internal state, the left side being truncated before outputing the hash value).

In the case of an external collision, this corresponds to P having an output differential of the form
(∆x,∆M) ∈ GF (2)4nm × GF (2)4nm, where XOR with the message difference ∆M in the right half will
give a zero difference. The left half is truncated, so it can take any difference ∆x. Thus the differential
external collision probability in the last 4 rounds is given by:

Pr(∆Output = (∆x,∆M)) =
∑

∆x∈GF (2)4nm

Pr(∆Input
4R
−→ (∆x,∆M)).
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We apply Theorem 4 to bound Pr(∆Input
4R
−→ (∆x,∆M)) in the following computation:

Pr(External Collision) =
∑

∆x∈GF (2)4nm

Pr(∆Input
4R
−→ (∆x,∆M))

≤ 24nm × max
∆x 6=0

Pr(∆Input
4R
−→ (∆x,∆M))

< 24nm ×
(

126× (2−7)n+1 + (2−6)n+1
)m

< 24nm ×
(

(2−7)n + (2−6)n+1
)m

= 24nm ×
[

(2−6n)(2−n + 2−6)
]m

< 24nm × 2−6nm = 2−2nm

where the complexity of a generic birthday attack is 24nm/2 = 22nm.
In the case of an internal collision on the 8nm-bit permutation P , since there is no truncation, the

differential probability is given by Pr(∆Input
4R
−→ (0, ∆Mi)) for all possible message differences ∆Mi. By

Theorem 4 and in the same way as the computation above, we can show that this is lower than 2−2nm, the
complexity of a generic birthday attack for the hash function.

Assuming the adversary can bypass half of the rounds by exploiting freedom degrees (which is far from being
possible with currently known cryptanalysis techniques), the above computations show that the adversary
cannot gain any advantage by a differential collision attack (internal or external) since the SPN-Hash internal
permutation has 10 rounds. Even if the adversary can find some clever way to extend the differential attack,
we still have several rounds as buffer for protection.

Therefore, to summarize, the probability of success of a differential collision attack on 4nm-bit SPN-Hash is
less than 2−2nm when the attacker can control at most all but 4 rounds, and this attack has worse complexity
than a generic birthday technique.

4.2 Application to 128-, 256-, and 512-bit SPN-Hash

In this section, we give bounds for the differential collision probability of the 128-, 256-, and 512-bit SPN-Hash
described in Section 3.3. In Section 5, we go on further to analyze the security of these hashes against preimage,
second preimage, rebound attacks and its latest variants.

128-bit SPN hash. For 4 uncontrolled rounds, the maximum differential probability is upper bounded by:

(

126× (2−7)9 + (2−6)9
)4

= 2−214.730.

We sum this upper bound over all differential ∆x ∈ GF (2)128 (external collision) or∆Mi ∈ GF (2)128 (internal
collision) to bound the differential collision probability by

2128 × 2−214.730 = 2−86.730 < 2−64.

and this shows that a differential collision attack with at least 4 uncontrolled rounds will not perform better
than a generic birthday attack.

256-bit SPN hash. For 4 uncontrolled rounds, the maximum differential probability is upper bounded by:

(

126× (2−7)9 + (2−6)9
)8

= 2−429.461.

We sum this upper bound over all differential ∆x ∈ GF (2)256 (external collision) or∆Mi ∈ GF (2)256 (internal
collision) to bound the differential collision probability by

2256 × 2−429.461 = 2−173.461 < 2−128.

and this shows that a differential collision attack with at least 4 uncontrolled rounds will not perform better
than a generic birthday attack.
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512-bit SPN hash. Similarily, we show that for 4 uncontrolled rounds, the maximum differential probability
is upper bounded by:

(

126× (2−7)17 + (2−6)17
)8

= 2−815.989.

We sum this upper bound over all differential ∆x ∈ GF (2)512 (external collision) or∆Mi ∈ GF (2)512 (internal
collision) to bound the differential collision probability by

2512 × 2−815.989 = 2−303.989 < 2−256.

and this shows that a differential collision attack with at least 4 uncontrolled rounds will not perform better
than a generic birthday attack.

The JH mode of operation is very handy for this type of proof as the amount of colliding differentials
always remains acceptable compared to the internal permutation size. This is true even in the case of internal
collisions because of the partial feedforward of the message block. The proof would be even easier to apply
if we reduced the amount of message bits inserted during each iterations, but we maximize the bit-rate by
incorporating message blocks of half the size of the internal permutation (for bigger message blocks, one could
not guarantee ideal collision resistance anymore).

5 Analysis of Other Attacks on SPN-Hash

5.1 (Second)-Preimage Attack

The JH mode of operation has a similar structure to the Sponge construction [7], which can ensure differential
collision resistance by proving good differential bounds for the underlying permutation. However, the Sponge
construction provides preimage resistance up to 2c/2 = 22nm, which is much lower than the expected 24nm.
This is due to the fact that the permutation can be inverted easily, and one can compute a preimage in a
MITM way. I.e., given a message with two blocks M0||M1, one can try 22nm different M ′

0 and 22nm truncations
H2,L, to meet at the state H1. Note the left half of the state can be matched immediately once a proper M ′

1

is chosen, hence the time complexity is essentially a meet-in-the-middle for 4nm bits. In the JH mode of
operation, there is an XOR of the message in the right half at the end of the permutation to make the
meet-in-the-middle (MITM) attacks invalid. With the XOR, this MITM attack does not work since once M ′

1

varies, the state value H2 changes as well and one cannot fix H2 and vary M ′
1 simultaneously. This attack on

the Sponge construction can easily be modified into a second pre-image attack, which is also defeated by the
feedforward XOR in the JH mode of operation.

In [8], Bhattacharyya et al. provide the indifferentiability proof and a preimage attack against the JH-512
hash function with both time and memory complexity 2507, using multi-collision techniques. This attack is a
theoretical improvement because the complexity is still of the same magnitude as brute force search. Moreover,
a generic time-memory trade-off (TMTO) attack with trade-off curve T ·M2 = N2 (attack complexity T ,
memory M and search space N), will perform much better. After a pre-computation with 2512 complexity
(which is equivalent to performing Bhattacharyya’s attack 32 times). Using 2507 memory to store the result
will allow each subsequent online attack to take just T = N2/M2 = 210 time complexity.

5.2 Rebound Attack - Distinguishing Attack on Permutation P

In this section, we describe an attack on the permutation P to distinguish the permutation P from an ideal
primitive on the same domain. Our overall strategy is to use the non-full-active Super S-box cryptanalysis
technique as detailed in [32]. The technique in [32] is an enhancement of the original Super-Sbox analysis
in [21, 26].

Central to the previous rebound [28] or start-from-the-middle [27] attacks, we attempt to find a pair of
internal state values in the middle of an optimally chosen truncated differential path such that the path is
verified for as many rounds as possible in both the backward and forward directions. This part is called the
controlled rounds or inbound and the rest of the path fulfilled probabilistically are called the uncontrolled
rounds or outbound. The main idea of the non-full-active Super S-box analysis is to use a differential path in
which its Super S-boxes in the controlled rounds comprise only non-full-active states. For non-active bytes,
the differential transition 0 to 0 always holds. Thus attackers can freely choose the value without breaking
the path. This gives the attackers the freedom degrees to adjust other bytes inside the Super-Sbox to be
connected efficiently. In the remaining of this section, we consider the 256-, 512- and 1024-bit permutations
P of the 128-, 256-, and 512-bit SPN-Hash respectively.
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8-round differential paths. We view the 256-bit, 512-bit and 1024-bit internal state of the permutation
P as a 8 × 4 matrix of bytes, a 8 × 8 matrix of bytes and a 16 × 8 matrix of bytes respectively. Figures 5, 6
and 7 of Appendix A depict 8-round differential paths for 256-bit P , 512-bit P and 1024-bit P respectively.
A gray cell denotes an active byte while a white cell denotes a passive byte.

The controlled rounds. With reference to Figures 5, 6 and 7, the beginning of round 3 until the end of
round 5 are the controlled rounds, indicated by dashed arrows in the figures. In round 4, we interchange the
generalized optimal diffusion layer with the XOR operation followed by the substitution layer. This enables
us to view the composition of substitution layer, MDS layer, XOR with round constant in round 4 and
substitution layer of round 5 as an overall application of eight Super-Sboxes in parallel. Then by applying
non-full-active Super S-box technique in [32],

– 256-bit P : we can obtain 216 starting points, which are solutions of the controlled rounds with time 216

and memory 216;
– 512-bit P : we can obtain 28 starting points, which are solutions of the controlled rounds with time 28 and

memory 28;
– 1024-bit P : we can obtain 216 starting points, which are solutions of the controlled rounds with time 216

and memory 216.

Hence we obtain a starting point with time 1 on average. As the computation procedure of the Super-Sboxes
involves much technicalities, we refer interested readers to Section 4.2 of [32] for a detailed explanation.

The uncontrolled rounds. We obtained valid candidates from the beginning of round 3 until the end of
round 5 but we have no control on the difference values prior to round 3 and beyond round 5. That is, the
rest of the path is fulfilled probabilistically, denoted by solid arrows in Figures 5, 6 and 7.

– 256-bit P : The path is fulfilled with probability approximately 2−24 in round 2 and approximately 2−32 in
round 6. For the rest of the rounds in the uncontrolled rounds, the path fulfilled with probability approx-
imately 1. Therefore the differential characteristic probability of the 8-round differential path depicted in
Figure 5 is approximately 2−56.

– 512-bit P : The path is fulfilled with probability approximately 2−24 in round 2, approximately 2−24 in
round 6 and approximately 1 in round 8. For the remaining of the uncontrolled rounds, the path is
deterministic. Therefore the differential characteristic probability of the 8-round differential path depicted
in Figure 6 is approximately 2−48.

– 1024-bit P : Similarly, the differential characteristic probability of the 8-round differential path depicted
in Figure 7 is approximately 2−24 × 2−64 = 2−88.

The amount of freedom degrees. Before analyzing the complexity of the distinguishing attack, we first
clarify the amount of freedom degrees available to the attacker. We want to ensure that there are enough
solutions for the controlled rounds such that it is highly probable that at least one of them will fulfill the
entire differential characteristic.

– 256-bit P : As calculated, we need 256 starting points. Since we can choose 280 differences at the start of
the controlled rounds (4-byte difference at the beginning of round 3 and 6-byte difference at the end of
round 5), we have enough freedom degrees to find a pair of values following the path.

– 512-bit P : As calculated, we need 248 starting points. Since we can choose 272 differences at the start of
the controlled rounds (5-byte difference at the beginning of round 3 and 4-byte difference at the end of
round 5), we have enough freedom degrees to find a pair of values following the path.

– 1024-bit P : Since we need 288 starting points and we can choose 28×4 × 28×9 = 2104 differences at the
start of the controlled rounds, we have enough freedom degrees to find a pair of values following the path.

Distinguishers for P . We consider the attack complexity in the ideal case. More generally, we study
the problem of mapping a i-bit zero difference mask to a j-bit zero difference mask through a t-bit ideal

permutation. Following the argument of [21], if j ≤ 2(t − i), then 2
j
2 input values from one single structure

are sufficient to achieve a collision on the j target positions. The attack complexity is about 2
j
2 .
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– 256-bit P : By substituting t = 256, i = 64 and j = 128, the attack complexity in the ideal case is 264.
– 512-bit P : By substituting t = 512, i = 192 and j = 192, the attack complexity in the ideal case is 296.
– 1024-bit P : By substituting t = 1024, i = 128 and j = 512, the attack complexity in the ideal case is 2256.

In contrast, the complexity of finding a valid pair for the whole 8-round differential path using the non-
full-active Super S-box technique is as follows:

– 256-bit P : 256 operations and 216 memory,
– 512-bit P : 248 operations and 28 memory, and
– 1024-bit P : 288 computations and 216 memory.

We thus obtain a distinguisher for the 8-round reduced 256/512/1024-bit permutation P . To the best of
our knowledge, the differential paths presented are among the longest paths with the least complexities. Since
P comprises ten round functions, the distinguishing attacks do not threaten the security of the hash function.

5.3 Exploiting the MDS layer structure for 128- and 256-bit SPN-Hash

An attacker could try to exploit the special structure used to build the MDS layer. Indeed, in the case of 128-
and 256-bit SPN-Hash, instead of using a diffusion matrix overGF (28) (like for AES, WHIRLPOOL or GRØSTL), the
layer is built by applying two times independently a diffusion matrix over GF (24). Note that since the process
is still equivalent to a MDS matrix, the proof on the number of active S-boxes is not impacted. However, in
the case of truncated differential paths, an attacker could try to make some differential transitions to happen
with better probability than expected by forcing at some stage that the differences remain on the left or on
the right side of the bytes processed.

For example, a truncated differential transition verified probabilistically from 8 active bytes to 1 active
byte should cost 27×8 = 256 tries, but if the all truncated differences are forced to be on the left or on the
right side, then the complexity becomes 27×4 = 228 tries. This observation was one of the main properties
used for the first attacks [31] on the ECHO hash function.

However, we believe such a strategy would very likely fail because this right/left property would be
destroyed by the application of the AES S-box. Alternatively, forcing this property to be maintained for
each active byte through the S-box layer would imply a big cost for the attacker, bigger than the gain from
the truncated differential transitions. This has been confirmed by experiments, as there is no strong bias
through the AES S-box in order to reach an all-right or an all-left difference (forward or backward). Note that
in the case of ECHO this is not true since the 128-bit ECHO S-box is implemented by two AES rounds, for which
forcing good truncated differential paths at no cost is easy.

6 Implementation

6.1 Software Performance

Due to its similarity with GRØSTL concerning the construction of the internal permutation, it is interesting
to analyze SPN-Hash’s software speed in the light of this SHA-3 candidate. The internal permutation of 256-
bit SPN-Hash is comparable with GRØSTL-256 since their (individual) internal permutation are of the same
size, and their amount of message bits per call to the internal permutation is the same (256-bit SPN-Hash

compression function processes 256 bits message in 10 round operations, compared to 512-bit message in
20 very similar round operations by GRØSTL-256). The round function of these two hash functions should
take about similar amount of time due to: 1) The equal number of substitution operations using the same
AES sbox; 2) The speed of MDS multiplication is independent of the MDS coefficients in most table-based
implementations; 3) The ShiftByte in GRØSTL is done together with step 2 in table-based implementations; 4)
The round constants are a bit simpler than those in GRØSTL; and 5) There are three times ⊕ for 512 bits in
GRØSTL and twice 256-bit ⊕ in 256-bit SPN hash. We did a simple and unoptimized implementation based on
table lookups, which turns to be 34 cycles per byte on a Intel(R) Xeon(R) CPU E5640 clocked at 2.67GHz. We
believe that there remains an important room for improvements by implementing SPN-Hash with optimized
assembly instructions. Similar comparison argument applies when one considers implementations with the
AES new instruction set, while GRØSTL-256 runs at 12 cycles per byte with internal parallelization of the two
permutations P and Q, we expect SPN-Hash-256 to run at 12 to 24 cycles per byte mostly due to the fact that
similiar parallelization is not possible. Note that the 128-bit SPN-Hash shall run as fast as the 256-bit version,
since its compression function takes half the message bits, and uses roughly half the amount of operations.
Test vectors are provided in Appendix Table 2.

Appeared in S. Vaudenay (Ed.): AFRICACRYPT 2012, LNCS 7374, pp. 270–286, 2012
c© Springer-Verlag Berlin Heidelberg 2012



6.2 Hardware Performance

We have implemented 128-bit and 256-bit SPN hash in VHDL and used Synopsys DesignCompiler A-2007.12-
SP1 to synthesize it to the Virtual Silicon (VST) standard cell library UMCL18G212T3, which is based on
the UMC L180 0.18µm 1P6M logic process with a typical voltage of 1.8 V. We used Synopsys Power Compiler
version A-2007.12-SP1 to estimate the power consumption of our ASIC implementations. For synthesis and
for power estimation we advised the compiler to keep the hierarchy and use a clock frequency of 100 KHz.

Figure 8 in Appendix A shows the datapath of the hardware architecture. As can be seen, our serialized
design is very similar to the design proposed in [22] and consists of six modules: MDS, State, IO, AC, SC, and
Controller.

IO allows to 1) initialize our implementation with an all ‘0’ vector; 2) input the IV, 3) absorb message
chunks; 4) store the whole message block Mi until the end of the permutation; and 5) forward the output
of the AC module to the SC module without further modification. It requires 638 GE and 1 236 GE, the vast
majority of which is used for storing Mi.

State comprises a nm array of flip-flop cells storing 8 bits each. Every row constitutes a shift-register
using the output of the last stage, i.e. column 0, as the input to the first stage (column m−1) of the same row
and the next row. Using this feedback functionality Generalized Optimal Diffusion (GOD) can be performed
in m− 1 clock cycles with no additional hardware costs. Further, since GOD is performed on column 0, also
a vertical shifting direction is required for this column. Consequently, columns 0 and m− 1 consist of flip-flop
cells with two inputs (6 GE), while columns 1 to m − 2 consist of flip-flop cells with only one input (4.67
GE). Also the final addition of the message block to the right half is included in this module. The overall gate
count for this module is 8 · 2.67 + 8 · n · ((m− 2) · 4.67 + 2 · 6) GE, that is 1 365 GE and 2 588 GE for 128-bit
and 256-bit SPN-hash respectively.

MDS uses two instances of of A256 and calculates their last row in one clock cycle. The result is stored in
the State module, that is in the last row of column 0, which has been shifted upwards at the same time.
Consequently, after n clock cycles the MixColumnsSerial operation is applied to an entire column. Then the
whole state array is rotated by one position to the left and the next column is processed. In total m · (n+ 1)
clock cycles and 290 GE are required to perform MDS. In comparison, back-of-the-envelope estimations of
the implementation of a single row of the 8× 8 MDS matrices of WHIRLPOOL and GRØSTL using our technology
indicate area requirements of around 256 GE and 350 GE, respectively. Adding minimal storage requirements
of around 260 GE to store seven temporary bytes,8 one can see that our MDS layer is indeed very light.

AC XORs RConi to the output of the State module when a control signal indicates that the first row is
processed. It requires 24 GE.

SC performs the S-box layer and comprises a single instantiation of Canright’s representation of the AES
S-box [13] which requires 233 GE. It takes nm clock cycles to perform AddConstant and SubCells on the
whole state.

Controller uses a Finite State Machine (FSM) to generate all control signals required. Furthermore, also
the round constants and the internal constants are generated within this module, as their values are used for
the transition conditions of the FSM. The FSM consists of one idle state, one state for the combined execution
of AC and SC, m − 1 states for GOD and two states for MDS (one for processing one column and another
one to rotate the whole state to the left). Naturally, its gate count varies depending on m: 200 GE for m = 4
and 254 GE for m = 8 respectively.

Table 1 in Appendix A compares our implementations of SPN hash with the remaining five SHA-3 candi-
dates with regards to area, latency and a FOM proposed by [2]. In order to have a fair comparison, we only
include figures for fully-autonomous low-area ASIC implementations and omit figures for implementations
that are optimized for high throughput. Among the SHA-3 candidates BLAKE, GRØSTL, and SKEIN, 256-bit
SPN-Hash is by far the most compact proposal. Though it has only the second highest FOM, our estimates for
a 64-bit datapath implementation indicate that it can achieve the highest FOM, while still being 35% smaller
than the most compact SHA-3 candidate.
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A Tables and Figures

Table 1. Comparison of Low-Area Hardware implementations of SPN hash and a selection of SHA-3 finalists.

Digest Alg. Ref. Msg. Technology Area Latency T’put@100KHz FOM
size size [GE] [clk] [kbps] [nbps/GE2]

128
SPN-Hash-128 256 UMC 0.18 2 777 710 36.1 2 338
SPN-Hash-128 256 estimate 4 600 230 55.7 2 627

256

SPN-Hash-256 512 UMC 0.18 4 625 1 430 35.8 837
SPN-Hash-256 512 estimate 8 500 230 111.3 1 541
BLAKE-32 [23] 512 UMC 0.18 13 575 816 62.8 340

GRØSTL-224/256 [34] 512 AMS 0.35 14 622 196 261.2 1 222
SKEIN-256-256 [34] 256 AMS 0.35 12 890 1 034 24.8 149

Fig. 1. One round of a SPN structure Fig. 2. The SDS function
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Fig. 3. The JH mode of operation

Fig. 4. The round function in permutation P
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Fig. 5. 8-round differential path for a 256-bit permutation P

Fig. 6. 8-round differential path for a 512-bit permutation P
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Fig. 7. 8-round differential path for a 1024-bit permutation P
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Fig. 8. Serial hardware architecture of 128-bit and 256-bit SPN hash. 512-bit SPN hash can use the very same
architecture, except for the MDS component.
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B Proofs

B.1 Proof of Theorem 3

Proof. Firstly, note that since π is a (m,n)-generalized optimal diffusion, by definition, so is π−1. Suppose
we have one active bundle in the layer θ. Since the transforms in that layer are all MDS, there are n + 1
differentially active input/output bytes in that bundle. These originate from or get distributed to at least
⌈(n+1)/(n/m)⌉ = m+1 bundles. Clearly, the remaining case where more than one bundle in θ is active will
result in at least m + 1 active input/output bundles to π ◦ θ ◦ π, making it a m × m MDS transform over
GF (28n).

B.2 Proof of Theorem 4

Proof. Here we base much of the proof on the wide trail strategy (see [18, Theorem 3], [17, Theorem 9.5.1]).
Since σ and π are byte-based operations, we may interchange their order. After this admissible re-arrangement
of operations, we can view four rounds of permutation P as a successive alternation between σ ◦ θ ◦ σ and
π ◦ θ ◦ π.

Each bundle over a σ ◦ θ ◦ σ transformation is a 8n-bit SDS structure consisting of the linear map θ
sandwiched between two layers of n 8-bit S-boxes. Since the MDS layer θ has branch number n+ 1 and the
S-boxes are all affine equivalent to the inversion function over GF (28), we can apply Theorem 1 with s = 8
and βd = n + 1 for the AES S-Box. The maximum differential probability of σ ◦ θ ◦ σ is thus bounded by
DPσ◦θ◦σ which is at most

max







max
1≤u≤255

255
∑

j=1

{DPS(u, j)}n+1, max
1≤u≤255

255
∑

j=1

{DPS(j, u)}n+1







.

We need to find the difference distribution DPS(u, j) where u ∈ GF (28) is fixed and j varies over all of
GF (28). This is given by the difference distribution for each row of the difference table. Similarly, we need
to find the difference distribution of the columns. Since all the S-boxes used are affine transforms of the
inversion function, they have the same difference distribution. Furthermore, as explained in [14, Section 4],
the difference distribution of the columns of the inversion function is the same as that for the rows. Thus,
we only need to consider the rows in the difference table. This simplifies the upper bound in Theorem 1 to
∑255

j=1{DPS(u, j)}n+1, u 6= 0.
The difference distribution for each row of the inversion mapping is the following: 129 differences with

no occurence, 126 differences with two occurences and 1 difference with four occurences. Hence, DPσ◦θ◦σ ≤
126× (2−7)n+1 + (2−6)n+1.

By Theorem 3, π ◦ θ ◦ π is a m × m MDS transform over GF (28n), i.e. it has a branch number m + 1
acting on bundles of n bytes. Thus, we can view 4 rounds of P as π ◦ θ ◦ π sandwiched between two layers
of m bundles, where each bundle has differential probability at most 126 × (2−7)n+1 + (2−6)n+1. Then by
Theorem 2, the maximum differential probability of 4 rounds of P is bounded by

(DPσ◦θ◦σ)
m <

(

126× (2−7)n+1 + (2−6)n+1
)m

.

C Test Vector

We hash the message “SPN-Hash: Improving the Provable Resistance Against Differential Collision Attacks”
with three variants of the SPN-Hash family, and the following are digests generated by our reference imple-
mentation.

SPN-Hash-128 2b021df78220afd2a41fa3592dc7d284

SPN-Hash-256 eabd18110d48e81d0663a7034b265462bf93f8019ca292e58ec1d830f90d67c5

SPN-Hash-512
f3e4a3dcc44acb2cf4d6f5f67bd8ce50ef030f55e0189a322136b5fc46af3cf5

e071f1ee9bf1851bbd854540da1ccc496d679b43090f8e24f486d6866092ac02

Table 2. Test vectors for three variants of SPN-Hash family
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