
Round-Reduced Near-Collisions of BLAKE-32

Jian Guo⋆1 and Krystian Matusiewicz2

1 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

guojian@ntu.edu.sg
2 Department of Mathematics

Technical University of Denmark
K.Matusiewicz@mat.dtu.dk

Abstract. In this paper3, we investigate the security of SHA-3 candidate BLAKE. We analyse the
propagation of differences that are rotation-invariant in the internal function G. We show that by using
them, it is possible to obtain near-collisions for the compression function reduced to 4 rounds out of
10. We also discuss the security of some variants of BLAKE.

Keywords. BLAKE, collision, variants, reduced-round

1 Introduction

BLAKE, a successor of LAKE [2], was designed by Aumasson et al [1] as a candidate for the SHA-3 com-
petition. It follows HAIFA structure with internal wide-pipe design strategy. Our analysis focuses on the
compression function, the internal function G, to be more precise. Hence here we only introduce the frame-
work of BLAKE and describe G function in details, we leave other details [1] to the reader.

The compression function of BLAKE (refer to Figure 1) contains three parts: Initialization, a number of
Rounds and Finalization.

Ht−1

S

t M

Initialization Round Finalization Ht

Fig. 1. Overall Structure of Compression Function of BLAKE

Initialization takes 8 words of the chaining value H , 4 words of salt S and 2 words of block index (t0, t1) as
input and produces 16 words of internal chaining values v0, . . . , v15 as follows:









v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15









←−









h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3

t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7









.

Round is a bi-mapping (It is a permutation if either chaining value or message is fixed), it takes 16 word
internal chaining value v0, . . . , v15 and 16 word message block as input and produces the updated 16 words
of the internal chaining. Each Round consists of 8 applications of G.

⋆ This work was done while visiting Technical University of Denmark and was partly supported by a DCAMM grant.
3 A merged version will appear in FSE 2010. The full version is available in http://eprint.iacr.org/2010/043.pdf.



//column half-round //diagonal half-round

G(v0, v4, v8, v12) G(v0, v5, v10, v15)

G(v1, v5, v9, v13) G(v1, v6, v11, v12)

G(v2, v6, v10, v14) G(v2, v7, v8, v13)

G(v3, v7, v11, v15) G(v3, v4, v9, v14)

Fig. 2. Compression Function: Round

Finalization takes 16 words chaining value from last Round function, 8 words chaining which is feedforward
from input of SaltState, and 4 word of salt as input and produces the 8 words output of the compression
function as shown below:

h′

0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8

h′

1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h′

2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10

h′

3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h′

4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12

h′

5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13

h′

6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14

h′

7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15

G function used in Round is based on a design of ChaCha [3]. The G function takes 4 chaining values and 2
message words as input and outputs the updated 4 chaining values. Messages are scheduled by permutation
functions σr and xor-ed with a constant before feeding into the G function, as shown in Figure 3.

816

12 7

Mi ⊕ Cj Mj ⊕ Ci

a

b

c

d

a

b

c

d

Fig. 3. G function transforms four chaining value words using two message words.

The sequence of instructions of G is shown below:

2



a← a + b + (Mσr(2i) ⊕ Cσr(2i+1))

d← (d⊕ a) ≫ 16

c← c + d

b← (b⊕ c) ≫ 12

a← a + b + (Mσr(2i+1) ⊕ Cσr(2i))

d← (d⊕ a) ≫ 8

c← c + d

b← (b⊕ c) ≫ 7

Here σ is a fixed permutation used in round r, Ms are message blocks and Cs are constants.

2 Round Reduced Near Collisions

2.1 Linearizing G

We note that inside the function G, the number of bits rotated are 16, 12, 8 and 7. There is only one not being
a multiple of 4. The idea is we use differences which are invariant with rotation by 4, such as 0x88888888

and try to avoid differences pass through the operation “rotation by 7”. We model the compression function
in F2, where a “1” denotes a difference in the register and “0” means no difference. We linearize the G

function by replacing addition with xor, and removing the rotations as the differences we choose are rotation
invariant. The linearized G function is shown in Fig 4.

Mi ⊕ Cj Mj ⊕ Ci

a

b

c

d

a

b

c

d

Fig. 4. linearized G function in F2

2.2 Round-Reduced Near Collisions

Under the linearized model, we have 16 bits of message and 16 bits of chaining values, hence the search
space is 232, which is feasible. However we can further reduce the search space by taking into account “no
differences pass through rotation by 7” conditions, and we aim to find 4 round-reduced collisions. As the
model is linear over F2, the whole compression function can be expressed by a bit vector consisting message
and chaining value multiple by a matrix. By the constraint of “0” in b, we use Magma to efficiently reduce
the search space to 24 for 4-round reduced compression function. On the other hand, to linearize the addition,
each bit comes with a cost 21, so linearizing a difference pattern 0x88888888 cost 27 as we can get the most
significant bit for free. As such, we aim to find those configurations which linearize the addition operation
as less as possible. Note that by choosing proper chaining values and messages, we can get the first 1.5
rounds for free. We did the search, and the configuration with differences in M[0] and V[0,3,7,8,14,15] and

3



starting point at round 3 gives count 8 only. This gives us complexity 256 with no memory requirements as we
can try and test the trail in sequence. This configuration gives final result H [0, . . . , 7] = (0, 0, 0, 1, 1, 1, 0, 0)
after feedforward. There are 3 registers containing differences, which gives 24-bits near collision. Figure 5
demonstrates how differences propagate in inter chaining values from round 3 to 6.

Fig. 5. Tracing the differences for near collisions on rounds 3 to 6. Inputs with difference are h0, h3, h7, s0, t1, and
M0. Gray cells denote states with differences.

2.3 Generalization of Rotation-Invariant Patterns

Further more, we note that with the number of rotations 16, 8, 12, only 12 is not multiple of 8. If we have
differences patterns like α = 0x80808080, β = 0x08080808 and α ⊕ β, this may reduce the complexity as
linearizing α, β costs 23 and 24 only. Hence, within the birthday bound, we hope to extend to more rounds.

We performed a search for such configurations, but it seems that this idea does not help with reducing
the complexity. Configurations which give the minimum number of linearizations are same as those using
the difference pattern 0x88888888 only.

2.4 Extending to More Rounds

We note the method is limited to 4 rounds (near) collisions because forcing each output b of G reduces
the search space by a factor of 2. We have 232 choices for chaining and messages, each round will reduce
the search space by 28 (8 Gs in each round), hence 4 rounds is the maximum. However, instead of forcing
differences in output b of G to be “0”, we allow it to be one, and hoping that it will vanish in next half
round. This is possible as operation ≫ 7 can be treated as (≫ 8) × 2 if the MSB is 0. We verified that
it is possible that carries from addition operations from other inputs may cancel this difference. Note that
the differences pattern becomes 0x11111111 when rotated towards LSB by 7. Even if this differences can
not be canceled, we still have near collision with additional 0.5 round as half round can only propagate the
difference to at most 4 registers (actually 3).

Current experiments show that this comes with unaffordable cost, i.e. the number of linearized additions
increases a lot.

3 Variants of BLAKE

If identical constants are used as a variant of BLAKE, then it can be broken as follows.

1. set all message words to be equal.
2. set v[i] = v[i + 1] = v[i + 2] = v[i + 3] for i = 0, 4, 8, 12.

The final result of the compression function will retain the symmetry property, i.e. h[0] = h[1] = h[2] = h[3]
and h[4] = h[5] = h[6] = h[7]. To find a collision of this variant, it costs 232 for BLAKE-32 and 264

BLAKE-64.
This does not apply to unmodified BLAKE because v[12] 6= v[13] as different constants are xor-ed with

t[0], and similarly v[14] 6= v[15] for t[1].

4



4 Conclusion

In this paper, we presented a near collision attack for 4 round-reduced BLAKE and discussed security level
for a variant using identical constants. Non-randomness for 5 or more rounds is worth investigation.

Acknowledgement

We would like to thank Christian Rechberger for helping present a preliminary version of this paper on WE-
WoRC 2009. We also thank Jean-Philippe Aumasson, Praveen Gauravaram, Stéphane Jacob, Özgül Küçük,
Yann Laigle-Chapuy, Gaëtan Leurent, and Martin Schläffer for pointing out that the previous differential
path was not consistent with the Initialization.

References

1. J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan. SHA-3 proposal BLAKE. Submission to NIST, 2008.
2. J.-P. Aumasson, W. Meier, and R. C.-W. Phan. The hash function family LAKE. In K. Nyberg, editor, FSE,

volume 5086 of Lecture Notes in Computer Science, pages 36–53. Springer, 2008.
3. D. J. Bernstein. Chacha, a variant of salsa20, 2008. Available at http://cr.yp.to/chacha.html.

5


