Key Recovery Attack on HMAC/NMAC based on Reduced Whirlpool

Jian Guo

joint on-going work with Lei Wang and Shuang Wu

Tsinghua University, China, 28 Nov 2012

Outline

1 Introduction

- HMAC and NMAC
- The Whirlpool Hash Function

2 Key Recovery Attacks

- Attack Overview
- Key Recovery for 5-round HMAC-Whirlpool
- Key recovery for 5-round NMAC-Whirlpool
- Key recovery for 6-round HMAC-Whirlpool in related-key setting
- Other PGV modes and MAC modes

3 Conclusion

Outline

1 Introduction

- HMAC and NMAC
- The Whirlpool Hash Function

2 Key Recovery Attacks

- Attack Overview
- Key Recovery for 5-round HMAC-Whirlpool
- Key recovery for 5-round NMAC-Whirlpool
- Key recovery for 6-round HMAC-Whirlpool in related-key setting
- Other PGV modes and MAC modes

3 Conclusion

HMAC and NMAC

- Designed by Mihir Bellare, Ran Canetti and Hugo Krawczyk in Crypto 1996
- Standarized by ANSI, IETF, ISO, NIST from 1997
- The most widely deployed hash-based MAC construction.

- Designed by Mihir Bellare, Ran Canetti and Hugo Krawczyk in Crypto 1996
- Standarized by ANSI, IETF, ISO, NIST from 1997
- The most widely deployed hash-based MAC construction.

The key is inserted in the way of key-as-IV, *i.e.*, H(K, M) means hashing message M with IV replaced by K.

- Designed by Mihir Bellare, Ran Canetti and Hugo Krawczyk in Crypto 1996
- Standarized by ANSI, IETF, ISO, NIST from 1997
- The most widely deployed hash-based MAC construction.

The key is inserted in the way of key-as-IV, *i.e.*, H(K, M) means hashing message M with IV replaced by K.

 $NMAC(K_0, K_1, M) = H(K_1, H(K_0, M))$

- Designed by Mihir Bellare, Ran Canetti and Hugo Krawczyk in Crypto 1996
- Standarized by ANSI, IETF, ISO, NIST from 1997
- The most widely deployed hash-based MAC construction.

The key is inserted in the way of key-as-IV, *i.e.*, H(K, M) means hashing message M with IV replaced by K.

 $\operatorname{NMAC}(K_0, K_1, M) = H(K_1, H(K_0, M))$

HMAC(K, M) = $H(IV, K \oplus ipad \parallel H(IV, K \oplus opad \parallel M))$, ipad and opad are predefined constants.

HMAC and NMAC

NMAC $(K_0, K_1, M) = H(K_1, H(K_0, M))$, with K_0 as K_{in} , and K_1 as K_{out} .

Whirlpool

- designed by Barreto and Rijmen in 2000 with 512-bit digest
- standarized by ISO/IEC
- follows Merkle-Damgård strengthening, and Miyaguchi-Preneel mode, *i.e.*, C(H, M) = E_H(M) ⊕ H ⊕ M
- both state and key follow the AES-like process

Whirlpool

- designed by Barreto and Rijmen in 2000 with 512-bit digest
- standarized by ISO/IEC
- follows Merkle-Damgård strengthening, and Miyaguchi-Preneel mode, *i.e.*, C(H, M) = E_H(M) ⊕ H ⊕ M
- both state and key follow the AES-like process

 Key
 AC o MR o SC o SB

 State
 AK o MR o SC o SB

1 Introduction

- HMAC and NMAC
- The Whirlpool Hash Function

2 Key Recovery Attacks

- Attack Overview
- Key Recovery for 5-round HMAC-Whirlpool
- Key recovery for 5-round NMAC-Whirlpool
- Key recovery for 6-round HMAC-Whirlpool in related-key setting
- Other PGV modes and MAC modes

3 Conclusion

- 2 Recovering K_{in}
- **3** Recovering the real key from K_{in} .

query many *M* to get corresponding *T*, find collision of *T*, verify (by querying *M*||*M*' for abitrary *M*') if it is also collision of *T*'.

- query many M to get corresponding T, find collision of T, verify (by querying M || M' for abitrary M') if it is also collision of T'.
- allow difference in 3-byte of *M* only, like difference in 3-byte of *M* only, like difference, finding collision of *T*' costs 2⁴⁸⁸ with 2²⁴ memory.

- query many M to get corresponding T, find collision of T, verify (by querying M || M' for abitrary M') if it is also collision of T'.
- allow difference in 3-byte of *M* only, like difference in 3-byte of *M* only, like difference, finding collision of *T*' costs 2⁴⁸⁸ with 2²⁴ memory.

We know collision on T', but not the actual value, and the message pair (M_1, M_2) with structured difference producing T' collision, we want to recover K_{in}

known value and difference in *M*, and no difference in T' recovery K_{in} with 2⁴⁸⁸ time and 2³⁸⁴ memory.

Recovering real key from K_{in}

 $C(IV, K \oplus ipad) = K_{in}$, recover K with known IV and K_{in} . Meet-in-the-Middle Preimage attack applies, with 2⁴⁴⁸ time and 2⁶⁴ memory [Wu et al 2012]

5-round NMAC-Whirlpool — Attack Overview

- find inner collision on T' (done)
- **2** recover K_{in} , *i.e.*, K_0 for NMAC (done)
- 3 find special structured near-collision on $V = MR^{-1}(T'' \oplus T''')$.
- **4** recover K_{out}, *i.e.*, K₁ for NMAC

Find structured near-collision on $V = MR^{-1}(T'' \oplus T''')$

Recovering T''':

- **1** With know K_{in} , compute (M, T', T'', T) for many M.
- **2** compute (T''', T) for many randomly chosen T'''.
- 3 find a collision on T, and recover (M, T''', T'').
- 4 check if $V = MR^{-1}(T'' \oplus T''')$ is a near collision of the form

Recovering Kout

with known value and difference in T'' and T''' and difference of $V = MR^{-1}(T'' \oplus T''')$ in diagonal.

recover K_{out} in time 2⁴²⁴ and 2³⁶⁰ memory.

6-round HMAC-Whirlpool — Attack Overview

- recover the internal value T', with key difference ipad ⊕ opad, in 2²⁵⁶ [PSW2012]
- **2** recover T'' and T''' as before
- 3 find 3-collision on $V = MR^{-1}(T'' \oplus T''')$, in time 2⁴⁰⁶ time and memory
- 4 recover K_{out}
- 5 recover K from Kout

Key recovery for 6-round HMAC-Whirlpool

with known value and difference in T'', T''', and 3-collision with strctured difference in diagonal of $V = MR^{-1}(T'' \oplus T''')$.

recover K_{out} in 2⁴⁴⁸ time and memory, and recover K from K_{out} using preimage attack presented in [SWWW12].

Other PGV modes and MAC modes

- Same attack applies to whirlpool in 4 other PGV modes
- it applies to secret-suffix MAC, secret-prefix MAC, and envelope MAC with similar number of rounds.

1 Introduction

- HMAC and NMAC
- The Whirlpool Hash Function

2 Key Recovery Attacks

- Attack Overview
- Key Recovery for 5-round HMAC-Whirlpool
- Key recovery for 5-round NMAC-Whirlpool
- Key recovery for 6-round HMAC-Whirlpool in related-key setting
- Other PGV modes and MAC modes

3 Conclusion

Result Summarization on HMAC/NMAC-Whirlpool

Target	#Rounds	Time	Memory	Data
HMAC-Whirlpool	5	2 448	2 384	2 488
single-key	5	2	2	2
NMAC-Whirlpool	5	2 448	2 384	2 488
single-key	5	2	2	2
HMAC-Whirlpool	6	2 496	2 406	2 488
related-key	0	2	2	2

Comparison with previous attacks

Targets	#Attacked Rounds	#Full Rounds	Percentage	Reference		
MD5	64	64	100%	[WY05]		
HMAC-MD5	No previous attack					
SHA-1 (collision)	80	80	100%	[WYY05]		
SHA-1 (preimage)	57	80	71%	[KK12]		
HMAC-SHA-1	34	80	43%	[CY06]		
Whirlpool (collision)	5	10	50%	[LMRR09]		
Whirlpool (preimage)	6	10	60%	[SWWW12]		
HMAC-Whirlpool	5	10	50%	Ours		
single-key	5	10	5078	Ours		
HMAC-Whirlpool	6	10	60%	Ours		
related-key				0010		

Thank you!

Questions?