
Implementing Lightweight Block Ciphers
on x86 Architectures

Jian Guo

joint work with, Ryad Benadjila Victor Lomné Thomas Peyrin

ASK, 27 August 2013
@ Shandong University, Weihai Campus, China

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Talk Overview

1 Introduction

2 Table-based

3 Vector-Permutation

4 Bitslice

5 Results and Conclusions

2 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Motivations

Existing work:

at CHES 2012, Matsuda and Moriai gave the first bitslice implementations on
PRESENT and Piccolo, showing that lightweight block ciphers can perform very well
for some cloud applications.

the good speed assumes the use case where long data is to be enciphered. This
may not always be the case, e.g., the Electronic Product Code, being a replacement
of barcode, is usually of size 64, 96, 125 bits, under which the speed can be
significantly slower.

also, the key schedule was removed from speed measurement, which does not seem
to be a valid assumption for many use cases.

Our work:

consider most of the possible use cases: with short/long data, shared/independent
keys, under serial/parallel operation modes.

besides bitslice, we also apply other implementation techniques, such as
table-based, and vector-permutation.

use LED, Piccolo, and PRESENT as examples.

give a fair and comprehensive comparison of the speed over all use cases, and over
all the three implementation techniques, under test with 6 different devices/servers.

3 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Motivations

Existing work:

at CHES 2012, Matsuda and Moriai gave the first bitslice implementations on
PRESENT and Piccolo, showing that lightweight block ciphers can perform very well
for some cloud applications.

the good speed assumes the use case where long data is to be enciphered. This
may not always be the case, e.g., the Electronic Product Code, being a replacement
of barcode, is usually of size 64, 96, 125 bits, under which the speed can be
significantly slower.

also, the key schedule was removed from speed measurement, which does not seem
to be a valid assumption for many use cases.

Our work:

consider most of the possible use cases: with short/long data, shared/independent
keys, under serial/parallel operation modes.

besides bitslice, we also apply other implementation techniques, such as
table-based, and vector-permutation.

use LED, Piccolo, and PRESENT as examples.

give a fair and comprehensive comparison of the speed over all use cases, and over
all the three implementation techniques, under test with 6 different devices/servers.

3 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Introduction
Implementation techniques considered:

Table-Based: table-lookup for sbox implementation, tables need to
be prepared in advance; subject to cache-timing attacks [Bernstein
2005].

Vector-Permutation: introduced by TWINE designers (SAC 2012) for
better software performance, applies with small parallelism.

Bitslice: sbox and other components implemented in algebraic
forms, good performance comes with computing multiple instances
together.

Lightweight block ciphers implemented with all techniques:

LED: 64-bit AES-like design with mainly 64-, 128-bit key size and
32/48 rounds, proposed by Guo et al. at CHES 2011.

Piccolo: 64-bit generalized feistel structure with 80-, 128-bit key
size and 25/31 rounds, proposed by Shibutani et al. at CHES 2011.

PRESENT: 64-bit SP-network design with 80-, 128-bit key size and
31 rounds, proposed by Bogdanov et al. at CHES 2007.

4 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Introduction
Implementation techniques considered:

Table-Based: table-lookup for sbox implementation, tables need to
be prepared in advance; subject to cache-timing attacks [Bernstein
2005].

Vector-Permutation: introduced by TWINE designers (SAC 2012) for
better software performance, applies with small parallelism.

Bitslice: sbox and other components implemented in algebraic
forms, good performance comes with computing multiple instances
together.

Lightweight block ciphers implemented with all techniques:

LED: 64-bit AES-like design with mainly 64-, 128-bit key size and
32/48 rounds, proposed by Guo et al. at CHES 2011.

Piccolo: 64-bit generalized feistel structure with 80-, 128-bit key
size and 25/31 rounds, proposed by Shibutani et al. at CHES 2011.

PRESENT: 64-bit SP-network design with 80-, 128-bit key size and
31 rounds, proposed by Bogdanov et al. at CHES 2007.

4 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Table-based Implementations I

Mainly for designs based on Substition-Permutation Networks, i.e., round
function consists of a non-linear operation such as sbox, followed by
linear operations, e.g., AES-like designs:

AddConstants

n cells

n cells

b bits

SubCells

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
SS

ShiftRows MixColumns

5 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Table-based Implementations II

Implementation Steps:

Preparation: Build tables, with cell input as index, and its corresponding column
output as table values.

Usage: 1 extract the cell value from column/state representation, this
involves “shift”, and “logic and” operations.

2 table lookups.
3 XOR table lookup values to form round outputs.

t0 = T0[state & MASKm];
t1 = T1[(state >> b) & MASKm];
t2 = T2[(state >> 2b) & MASKm];
...
state = t0 ˆ t1 ˆ t2 ˆ ...;

Computation of a generic SPN lightweight cipher round
Input: State, Tables / Output: Updated state

Total cost: n2 times�, &, table lookup, ⊕.

6 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Table-based Implementations II

Implementation Steps:

Preparation: Build tables, with cell input as index, and its corresponding column
output as table values.

Usage: 1 extract the cell value from column/state representation, this
involves “shift”, and “logic and” operations.

2 table lookups.
3 XOR table lookup values to form round outputs.

t0 = T0[state & MASKm];
t1 = T1[(state >> b) & MASKm];
t2 = T2[(state >> 2b) & MASKm];
...
state = t0 ˆ t1 ˆ t2 ˆ ...;

Computation of a generic SPN lightweight cipher round
Input: State, Tables / Output: Updated state

Total cost: n2 times�, &, table lookup, ⊕.
6 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Tabulating

Group m, up to n, cells together to form bigger cells, 1 ≤ m ≤ n, then it
needs n · dn/me table-lookups, with bigger memory requirements.
Example with m = 2, n = 4:

AddConstants

n cells

n cells

b bits

SubCells

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
SS

S

ShiftRows MixColumns

No. of Tables/Lookups Memory (bits) No. of XORs

No Tabulating n2 n2 · 2b · nb n · (n − 1)
Tabulating dn2/me dn2/me · 2mb · nb n · (dn/me − 1)

7 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Tabulating

Group m, up to n, cells together to form bigger cells, 1 ≤ m ≤ n, then it
needs n · dn/me table-lookups, with bigger memory requirements.
Example with m = 2, n = 4:

AddConstants

n cells

n cells

b bits

SubCells

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
SS

S

ShiftRows MixColumns

No. of Tables/Lookups Memory (bits) No. of XORs

No Tabulating n2 n2 · 2b · nb n · (n − 1)
Tabulating dn2/me dn2/me · 2mb · nb n · (dn/me − 1)

7 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Tradeoffs

memory/table sizes v.s. number of table-lookups, via m. Table size
affects speed of lookup operations, due to limitation of cache size.

column v.s. state as lookup table values. Column representation is
smaller, while state representation enables integration of other
state-wise operations such as “ShiftRows”, inter-column
tabulating, and SuperSbox technique.

SuperSbox for two rounds with more memory requirements v.s.
usual table-lookup with less memory requirements for one round.

8 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Tradeoffs

memory/table sizes v.s. number of table-lookups, via m. Table size
affects speed of lookup operations, due to limitation of cache size.

column v.s. state as lookup table values. Column representation is
smaller, while state representation enables integration of other
state-wise operations such as “ShiftRows”, inter-column
tabulating, and SuperSbox technique.

SuperSbox for two rounds with more memory requirements v.s.
usual table-lookup with less memory requirements for one round.

8 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Tradeoffs

memory/table sizes v.s. number of table-lookups, via m. Table size
affects speed of lookup operations, due to limitation of cache size.

column v.s. state as lookup table values. Column representation is
smaller, while state representation enables integration of other
state-wise operations such as “ShiftRows”, inter-column
tabulating, and SuperSbox technique.

SuperSbox for two rounds with more memory requirements v.s.
usual table-lookup with less memory requirements for one round.

8 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Deciding the right m
Bigger m implies more memory requirements, and less table-lookups.
However, if the tables can not be fit into the cache, lookup slows down,

by
how much ?

microarchitecture L1 size (KBytes) L1 latency (cycles) L2 size (KBytes) L2 latency (cycles)

Intel P6 16 or 32 3 512 8
Intel Core 32 3 1500 15

Intel Nehalem / Westmere 32 4 256 10
Intel Sandy / Ivy Bridge 32 5 256 12

lT = PL1 × lL1 + PL2 × lL2 + PL3 × lL3 + PM × lM + · · ·

So that we can “predict” the best choice of m, without actual
implementations.

Observations: for better performance, feed L1 cache as much as
possible, and in most of the cases, exceeding a bit the L1 cache is better
than partial-usage, e.g., m = 2 gives the best speed for LED, and it is
faster when m = 3 than that when m = 1.

9 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Deciding the right m
Bigger m implies more memory requirements, and less table-lookups.
However, if the tables can not be fit into the cache, lookup slows down, by
how much ?

microarchitecture L1 size (KBytes) L1 latency (cycles) L2 size (KBytes) L2 latency (cycles)

Intel P6 16 or 32 3 512 8
Intel Core 32 3 1500 15

Intel Nehalem / Westmere 32 4 256 10
Intel Sandy / Ivy Bridge 32 5 256 12

lT = PL1 × lL1 + PL2 × lL2 + PL3 × lL3 + PM × lM + · · ·

So that we can “predict” the best choice of m, without actual
implementations.

Observations: for better performance, feed L1 cache as much as
possible, and in most of the cases, exceeding a bit the L1 cache is better
than partial-usage, e.g., m = 2 gives the best speed for LED, and it is
faster when m = 3 than that when m = 1.

9 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Deciding the right m
Bigger m implies more memory requirements, and less table-lookups.
However, if the tables can not be fit into the cache, lookup slows down, by
how much ?

microarchitecture L1 size (KBytes) L1 latency (cycles) L2 size (KBytes) L2 latency (cycles)

Intel P6 16 or 32 3 512 8
Intel Core 32 3 1500 15

Intel Nehalem / Westmere 32 4 256 10
Intel Sandy / Ivy Bridge 32 5 256 12

lT = PL1 × lL1 + PL2 × lL2 + PL3 × lL3 + PM × lM + · · ·

So that we can “predict” the best choice of m, without actual
implementations.

Observations: for better performance, feed L1 cache as much as
possible, and in most of the cases, exceeding a bit the L1 cache is better
than partial-usage, e.g., m = 2 gives the best speed for LED, and it is
faster when m = 3 than that when m = 1.

9 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Deciding the right m
Bigger m implies more memory requirements, and less table-lookups.
However, if the tables can not be fit into the cache, lookup slows down, by
how much ?

microarchitecture L1 size (KBytes) L1 latency (cycles) L2 size (KBytes) L2 latency (cycles)

Intel P6 16 or 32 3 512 8
Intel Core 32 3 1500 15

Intel Nehalem / Westmere 32 4 256 10
Intel Sandy / Ivy Bridge 32 5 256 12

lT = PL1 × lL1 + PL2 × lL2 + PL3 × lL3 + PM × lM + · · ·

So that we can “predict” the best choice of m, without actual
implementations.

Observations: for better performance, feed L1 cache as much as
possible, and in most of the cases, exceeding a bit the L1 cache is better
than partial-usage, e.g., m = 2 gives the best speed for LED, and it is
faster when m = 3 than that when m = 1.

9 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Deciding the right m
Bigger m implies more memory requirements, and less table-lookups.
However, if the tables can not be fit into the cache, lookup slows down, by
how much ?

microarchitecture L1 size (KBytes) L1 latency (cycles) L2 size (KBytes) L2 latency (cycles)

Intel P6 16 or 32 3 512 8
Intel Core 32 3 1500 15

Intel Nehalem / Westmere 32 4 256 10
Intel Sandy / Ivy Bridge 32 5 256 12

lT = PL1 × lL1 + PL2 × lL2 + PL3 × lL3 + PM × lM + · · ·

So that we can “predict” the best choice of m, without actual
implementations.

Observations: for better performance, feed L1 cache as much as
possible, and in most of the cases, exceeding a bit the L1 cache is better
than partial-usage, e.g., m = 2 gives the best speed for LED, and it is
faster when m = 3 than that when m = 1.

9 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Super-Sbox Technique for AES-like Designs

AC ◦ SB ◦ SR ◦MC ◦ AC ◦ SB ◦ SR ◦MC
⇐⇒

AC ◦ SR |SB ◦MC ◦ AC ◦ SB︸ ︷︷ ︸
supersbox

| SR ◦MC

Cipher can be viewed as:

AC ◦ SR · · · |SB ◦MC ◦ AC ◦ SB SR ◦MC ◦ AC ◦ SR︸ ︷︷ ︸
repeat r/2 times

| · · · SR−1 ◦ AC−1

SB ◦MC ◦ AC ◦ SB ◦ SR ◦MC ◦ AC ◦ SR forms the new SP-Network, with

(SB ◦MC ◦ AC ◦ SB) as the S-layer, with column as new sbox.

(SR ◦MC ◦ AC ◦ SR) as the P-Layer

Effects:

Cons: number of entries for each table increases to 2nb , with state as table
values, this requires 2nb · n2b · n · (r/2 − 1) bits memory, e.g.,
LED-64 requires 32 MB.

Pros: Reduce the number of rounds by half. On some processors and
likely on future bulldozer processors, it might improve the speed.

10 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Super-Sbox Technique for AES-like Designs

AC ◦ SB ◦ SR ◦MC ◦ AC ◦ SB ◦ SR ◦MC
⇐⇒

AC ◦ SR |SB ◦MC ◦ AC ◦ SB︸ ︷︷ ︸
supersbox

| SR ◦MC

Cipher can be viewed as:

AC ◦ SR · · · |SB ◦MC ◦ AC ◦ SB SR ◦MC ◦ AC ◦ SR︸ ︷︷ ︸
repeat r/2 times

| · · · SR−1 ◦ AC−1

SB ◦MC ◦ AC ◦ SB ◦ SR ◦MC ◦ AC ◦ SR forms the new SP-Network, with

(SB ◦MC ◦ AC ◦ SB) as the S-layer, with column as new sbox.

(SR ◦MC ◦ AC ◦ SR) as the P-Layer

Effects:

Cons: number of entries for each table increases to 2nb , with state as table
values, this requires 2nb · n2b · n · (r/2 − 1) bits memory, e.g.,
LED-64 requires 32 MB.

Pros: Reduce the number of rounds by half. On some processors and
likely on future bulldozer processors, it might improve the speed.

10 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Super-Sbox Technique for AES-like Designs

AC ◦ SB ◦ SR ◦MC ◦ AC ◦ SB ◦ SR ◦MC
⇐⇒

AC ◦ SR |SB ◦MC ◦ AC ◦ SB︸ ︷︷ ︸
supersbox

| SR ◦MC

Cipher can be viewed as:

AC ◦ SR · · · |SB ◦MC ◦ AC ◦ SB SR ◦MC ◦ AC ◦ SR︸ ︷︷ ︸
repeat r/2 times

| · · · SR−1 ◦ AC−1

SB ◦MC ◦ AC ◦ SB ◦ SR ◦MC ◦ AC ◦ SR forms the new SP-Network, with

(SB ◦MC ◦ AC ◦ SB) as the S-layer, with column as new sbox.

(SR ◦MC ◦ AC ◦ SR) as the P-Layer

Effects:

Cons: number of entries for each table increases to 2nb , with state as table
values, this requires 2nb · n2b · n · (r/2 − 1) bits memory, e.g.,
LED-64 requires 32 MB.

Pros: Reduce the number of rounds by half. On some processors and
likely on future bulldozer processors, it might improve the speed.

10 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Super-Sbox Technique for AES-like Designs

AC ◦ SB ◦ SR ◦MC ◦ AC ◦ SB ◦ SR ◦MC
⇐⇒

AC ◦ SR |SB ◦MC ◦ AC ◦ SB︸ ︷︷ ︸
supersbox

| SR ◦MC

Cipher can be viewed as:

AC ◦ SR · · · |SB ◦MC ◦ AC ◦ SB SR ◦MC ◦ AC ◦ SR︸ ︷︷ ︸
repeat r/2 times

| · · · SR−1 ◦ AC−1

SB ◦MC ◦ AC ◦ SB ◦ SR ◦MC ◦ AC ◦ SR forms the new SP-Network, with

(SB ◦MC ◦ AC ◦ SB) as the S-layer, with column as new sbox.

(SR ◦MC ◦ AC ◦ SR) as the P-Layer

Effects:

Cons: number of entries for each table increases to 2nb , with state as table
values, this requires 2nb · n2b · n · (r/2 − 1) bits memory, e.g.,
LED-64 requires 32 MB.

Pros: Reduce the number of rounds by half. On some processors and
likely on future bulldozer processors, it might improve the speed. 10 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Vector-Permutation

vperm for short, was introduced by TWINE designers in SAC 2012, takes
advantage of SIMD (single instruction multiple data), especially “pshufb”
instruction, introduced with SSSE3 extension with Intel Core
microarchitecture.

pshufb xmm0, xmm1:

When xmm0 stores s[0], s[1], . . ., and sbox inputs are stored in xmm1
byte-wise, then this instruction functions as substitution byte-wise, in
parallel. Perfectly fits 4-bit sboxes, with possibility extending to larger
outputs.
Besides simple design TWINE, it turns out to be efficient for relatively
more complex designs as well.

11 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Vector-Permutation

vperm for short, was introduced by TWINE designers in SAC 2012, takes
advantage of SIMD (single instruction multiple data), especially “pshufb”
instruction, introduced with SSSE3 extension with Intel Core
microarchitecture.

pshufb xmm0, xmm1:

When xmm0 stores s[0], s[1], . . ., and sbox inputs are stored in xmm1
byte-wise, then this instruction functions as substitution byte-wise, in
parallel. Perfectly fits 4-bit sboxes, with possibility extending to larger
outputs.
Besides simple design TWINE, it turns out to be efficient for relatively
more complex designs as well.

11 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Vector-Permutation

vperm for short, was introduced by TWINE designers in SAC 2012, takes
advantage of SIMD (single instruction multiple data), especially “pshufb”
instruction, introduced with SSSE3 extension with Intel Core
microarchitecture.

pshufb xmm0, xmm1:

When xmm0 stores s[0], s[1], . . ., and sbox inputs are stored in xmm1
byte-wise, then this instruction functions as substitution byte-wise, in
parallel. Perfectly fits 4-bit sboxes, with possibility extending to larger
outputs.

Besides simple design TWINE, it turns out to be efficient for relatively
more complex designs as well.

11 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Vector-Permutation

vperm for short, was introduced by TWINE designers in SAC 2012, takes
advantage of SIMD (single instruction multiple data), especially “pshufb”
instruction, introduced with SSSE3 extension with Intel Core
microarchitecture.

pshufb xmm0, xmm1:

When xmm0 stores s[0], s[1], . . ., and sbox inputs are stored in xmm1
byte-wise, then this instruction functions as substitution byte-wise, in
parallel. Perfectly fits 4-bit sboxes, with possibility extending to larger
outputs.
Besides simple design TWINE, it turns out to be efficient for relatively
more complex designs as well. 11 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Packing and unPacking

Packing for the 2-parallelism vperm implementation of PRESENT and
Piccolo. Each rectangle represents a 4-bit nibble:

2 blocks of 64-bit words

128-bit XMM register
4-bit

x = s & 0x0f0f0f...0f; vpshufb r0, t0, x;
y = (s>>4) & 0x0f0f0f...0f; vpshufb r1, t1, y;
r = r0 ˆ r1

Substitution Operation for 2-parallel vperm

Note: t1 = t0 � 4.

12 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Development and Future

New instruction sets are added to SSSE4.2, available on Intel CPU
generations, Sandy and Ivy Bridge. 128-bit xmm registers are
extended to 256-bit ymm registers.

Three operands form of the instructions, table lookups can be
performed with one instruction “vpshufb t, s, r” instead of the
two instuctions “movdqa t, s; pshufb t, r”

full operations on ymm have been introduced on the recent Haswell
architecture with AVX2, to be extended to 512-bit registers in around
2015.

13 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Use cases

Motivated by the use case of encryption/decryption with big data under
same key considered in [Matsuda-Moriai’12], and to fit applications with
short data and distinct keys such as authentication and access control,
we further generalize the use cases according to three factors:

the server is communicating with D devices, each using a distinct
key

the server has to encrypt/decrypt B blocks of data, each block of 64
bits.

the operation modes, serial (such as CBC) and parallel (such as
CTR).

These factors are used to test table-based and vperm implementations
as well.

14 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Bitslice Implementations

sboxes are represented and implemented in algebraic forms

usually runs with multiple instances of data together, for better
performance

all cipher components need to be implemented in bitslice way,
including key schedules if any

come with overhead of packing and unpacking of both data and key
materials into bitslice form, which in some cases can cause
performance reduction significantly

15 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Algebraic Forms of Sboxes

// Input: r3, r2, r1, r0, t −−− Output: r3, r2, r1, r0
#define Sbox(r3, r2, r1, r0, t)
r2 = XOR(r2,r1); r3 = XOR(r3,r1); t = r2; r2 = AND(r2,r3);
r1 = XOR(r1,r2); t = XOR(t,r0); r2 = r1; r1 = AND(r1,t);
r1 = XOR(r1,r3); t = XOR(t,r0); t = OR(t,r2); r2 = XOR(r2,r0);
r2 = XOR(r2,r1); t = XOR(t,r3); r2 = ˜r2; r0 = XOR(r0,t);
r3 = r2; r2 = AND(r2,r1); r2 = XOR(r2,t); r2 = ˜r2;

Bitslice implementation of LED and PRESENT Sbox

// Input: r3, r2, r1, r0, t −−− Output: r0, r1, r2, r3
#define Sbox(r3, r2, r1, r0, t)
t = r1; r1 = OR(r1,r2); r3 = ˜r3; r0 = XOR(r0,r2);
r1 = XOR(r1,r3); r3 = OR(r3,r2); r0 = XOR(r0,r3); r3 = r1;
r3 = OR(r3,r0); r3 = XOR(r3,t); t = OR(t,r0); r2 = XOR(r2,t);
r3 = ˜r3;

Bitslice implementation of Piccolo Sbox

There can be many algebraic forms for the same sbox, (sub-) optimal
choice search is mainly done by the tool provided by Dag Arne Osvik in
2000.

16 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Packing and Unpacking

16
bl

oc
ks

64-bit words

128-bit XMM registers

r0r1r2r3

r4r5r6r7

Packing for the 16-parallel bitslice implementation of LED and PRESENT.

17 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Key Schedules
LED has virtually no key schedule, the same master key is used as
round key in every 4 rounds.

one step

P 4 rounds

K
4 rounds

K
4 rounds

K K
4 rounds

K K
C

PRESENT key schedule consists of sbox, adding constant, and
rotation of 61 bits;

Piccolo key schedule involves selection and combination of 16-bit
key words, we prepare the bitslice form of the 16-bit words
independently once and for all, and combination can be done with
xor-ing the words at each round.

LED-64 LED-128 Piccolo-80 Piccolo-128 PRESENT-80 PRESENT-128
Key schedule ratio 3.3% 4.1% 20.2% 26.7% 55.2% 59.9%

18 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Use cases and Tests

indep.
devices mess.

size

op.
mode

example LED PRESENT Piccolo

1
small small - authentication / access control /

secure traceability (industrial
assembly line)

tbl/vperm tbl/vperm tbl/vperm

2
small big parallel secure streaming communication

(medical device sending
continuously sensitive data to a

server, tracking data, etc.)

bitslice bitslice bitslice

3
small big serial secure serial communication

tbl/vperm tbl/vperm tbl/vperm

4
big small - multi-user authentication / secure

traceability (parallel industrial
assembly lines)

bitslice bitslice bitslice

5
big big parallel multi-user secure streaming

communication / cloud computing
/ smart meters server / sensors

network / Internet of Things

bitslice bitslice bitslice

6
big big serial multi-user secure serial

communication
bitslice bitslice bitslice

Six device/server use cases for lightweight encryption. The notation
“big/small” refers to more/less than 10 on average, for experiments we
used 1000 and 1.

19 / 21

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Our Results
implemented each technique to all main variants of LED, Piccolo,
PRESENT, and tested under different use cases, with 6
devices/servers.

provided a model to predict table-based implementation speed for
best choice of tabulating.

observed the key schedule, and (un)packing overhead in bitslice
implementations.

achieved best LED table-based implementation of 57c/B, and best
bitslice implementation of 12 c/B.

overview of the way to choose the best implementation technique
for different use cases.

confirmed that lightweight block ciphers can be efficient, with at
least one of the implementation techniques.

all source code will be published via
https://sites.google.com/site/cipherscodes

20 / 21

https://sites.google.com/site/cipherscodes

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Our Results
implemented each technique to all main variants of LED, Piccolo,
PRESENT, and tested under different use cases, with 6
devices/servers.

provided a model to predict table-based implementation speed for
best choice of tabulating.

observed the key schedule, and (un)packing overhead in bitslice
implementations.

achieved best LED table-based implementation of 57c/B, and best
bitslice implementation of 12 c/B.

overview of the way to choose the best implementation technique
for different use cases.

confirmed that lightweight block ciphers can be efficient, with at
least one of the implementation techniques.

all source code will be published via
https://sites.google.com/site/cipherscodes

20 / 21

https://sites.google.com/site/cipherscodes

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Our Results
implemented each technique to all main variants of LED, Piccolo,
PRESENT, and tested under different use cases, with 6
devices/servers.

provided a model to predict table-based implementation speed for
best choice of tabulating.

observed the key schedule, and (un)packing overhead in bitslice
implementations.

achieved best LED table-based implementation of 57c/B, and best
bitslice implementation of 12 c/B.

overview of the way to choose the best implementation technique
for different use cases.

confirmed that lightweight block ciphers can be efficient, with at
least one of the implementation techniques.

all source code will be published via
https://sites.google.com/site/cipherscodes

20 / 21

https://sites.google.com/site/cipherscodes

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Our Results
implemented each technique to all main variants of LED, Piccolo,
PRESENT, and tested under different use cases, with 6
devices/servers.

provided a model to predict table-based implementation speed for
best choice of tabulating.

observed the key schedule, and (un)packing overhead in bitslice
implementations.

achieved best LED table-based implementation of 57c/B, and best
bitslice implementation of 12 c/B.

overview of the way to choose the best implementation technique
for different use cases.

confirmed that lightweight block ciphers can be efficient, with at
least one of the implementation techniques.

all source code will be published via
https://sites.google.com/site/cipherscodes

20 / 21

https://sites.google.com/site/cipherscodes

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Our Results
implemented each technique to all main variants of LED, Piccolo,
PRESENT, and tested under different use cases, with 6
devices/servers.

provided a model to predict table-based implementation speed for
best choice of tabulating.

observed the key schedule, and (un)packing overhead in bitslice
implementations.

achieved best LED table-based implementation of 57c/B, and best
bitslice implementation of 12 c/B.

overview of the way to choose the best implementation technique
for different use cases.

confirmed that lightweight block ciphers can be efficient, with at
least one of the implementation techniques.

all source code will be published via
https://sites.google.com/site/cipherscodes

20 / 21

https://sites.google.com/site/cipherscodes

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Our Results
implemented each technique to all main variants of LED, Piccolo,
PRESENT, and tested under different use cases, with 6
devices/servers.

provided a model to predict table-based implementation speed for
best choice of tabulating.

observed the key schedule, and (un)packing overhead in bitslice
implementations.

achieved best LED table-based implementation of 57c/B, and best
bitslice implementation of 12 c/B.

overview of the way to choose the best implementation technique
for different use cases.

confirmed that lightweight block ciphers can be efficient, with at
least one of the implementation techniques.

all source code will be published via
https://sites.google.com/site/cipherscodes

20 / 21

https://sites.google.com/site/cipherscodes

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Our Results
implemented each technique to all main variants of LED, Piccolo,
PRESENT, and tested under different use cases, with 6
devices/servers.

provided a model to predict table-based implementation speed for
best choice of tabulating.

observed the key schedule, and (un)packing overhead in bitslice
implementations.

achieved best LED table-based implementation of 57c/B, and best
bitslice implementation of 12 c/B.

overview of the way to choose the best implementation technique
for different use cases.

confirmed that lightweight block ciphers can be efficient, with at
least one of the implementation techniques.

all source code will be published via
https://sites.google.com/site/cipherscodes

20 / 21

https://sites.google.com/site/cipherscodes

Introduction Table-based Vector-Permutation Bitslice Results and Conclusions

Thank you !

Q & A

21 / 21

	Introduction
	Table-based
	Vector-Permutation
	Bitslice
	Results and Conclusions

