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Abstract. In this paper, we analyse the security of the compression
function of the cryptographic hash function LAKE-256 proposed at FSE
2008 by Aumasson, Meier and Phan. We present a near collision attack
on the compression function with complexity equivalent to around 230

calls to the compression function and practical memory requirements. We
show an example of nearly colliding 256-bit outputs of the compression
function of LAKE-256 where only 16 bits differ. Using this method, we
present a collision attack on the compression function in around 242

evaluations of the compression function. An interesting feature of this
attack is that it is independent of the number of rounds used by the
compression function.

1 Introduction

The wave of cryptanalytical results on the cryptographic hash functions
following the attacks on MD5 and SHA-1 by Wang et al. [19, 18, 17] has
seriously undermined the confidence in many currently deployed hash
functions. Around the same time, new generic attacks such as multicol-
lision attack [9], long message second preimage attack [11] and herding
attack [10], exposed some undesirable properties and weaknesses in the
popular Merkle-Damg̊ard (MD) construction [14, 7]. These recent devel-
opments have renewed the interest in the design of hash functions. Sub-
sequent announcement by NIST of the Advanced Hash Standard (AHS)
competition, aiming at augmenting the FIPS 180-2 [15] standard with a
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new cryptographic hash function, has further stimulated the interest in
the design and analysis of hash functions.

The hash function family LAKE [2], presented at FSE 2008, is one of
the new designs. The LAKE hash function family follows the design prin-
ciples of the HAIFA framework [3, 4] – a strenghtened alternative to the
MD construction. The LAKE iteration follows the HAIFA structure. As
the additional inputs to the compression function, LAKE uses a random
value (also called salt) and an index value, which counts the number of
bits/blocks in the input message processed so far.

The designer of LAKE conjecture the ideal security levels against col-
lision and (second) preimage attacks. They also claim that it is hard to
find pseudo collisions or near collisions for the members of the LAKE
family. So far, the only published cryptanalytical result has been a colli-
sion attack on a reduced version of LAKE-256. The attack published by
Mendel and Schläffer [13] has complexity 2109 if LAKE is applied to 4
rounds (instead of 8).

Our contributions In this work, we analyse the collision resistance of
the compression function of LAKE-256. We present a practical near colli-
sion attack against the full compression function of LAKE. We also show
an example of two distinct input pairs (salt, chaining variable) that, for
the same message block, produce digests that differ on 16 out 256 bits.
The complexity of our near collision attack is 230 evaluations of the LAKE
compression function and requires a manageable amount of memory. An
interesting feature of our attack is that it is independent of the number
of rounds used by the compression function. Thus, increasing the number
of rounds does not increase the security of LAKE. We show how to ex-
tend this attack to find full collisions for the compression function with
estimated complexity of around 242.

Our collision attack on the compression function does not threaten
the hash function itself directly, but it demonstrates that the arguments
put forward in the discussion about the collision resistance of LAKE are
no longer valid. We expect that a modification of our attack is also appli-
cable to LAKE-512 but its complexity would be higher because solving
an appropriate system of constrains for longer words is going to be more
complicated.

The rest of the paper is organized as follows. After introducing the
notation in Section 1.1, we briefly describe LAKE-256 in Section 2. Some
important properties of the internal function f are discussed in Section 3.
In Section 4, we introduce the techniques used for finding the differentials
that are in our attack. Finally, in Section 5 we discuss the algorithm for



solving the system of conditions induced by the differentials and give
the complexity analysis. Section 6 compares our attack with some other
attacks. Section 7 concludes the paper.

1.1 Notation

Throughout the paper, we assume that every addition and subtraction
is performed modulo 2n unless otherwise specified, where n = 32 for
LAKE-256. We use the notation −1 for a word with all bits set to one,
i.e. (1, . . . , 1). Moreover, we use the following notation

– xi : the i-th bit of x, where i ∈ {0, . . . , n− 1} and x0 is the least
significant bit of x.

– x : the bitwise complement of x, e.g. 11001110 = 00110001
– XOR difference is x⊕ def= x⊕x′, the modular difference is ∆x def= x′−x.

When we say difference in x, it refers to ∆x.
– x≫ k : circular rotation of x to the right by k bits.
– s = [xLk |xRk ], where xLk is the most significant n− k bits and xRk is the

least significant k bits of x, i.e. s = xLk 2k + xRk .
– 1[expr] is the characteristic function of the expression expr, 1[true] =

1, 1[false] = 0.

2 Description of LAKE

In this section, we provide a brief description of LAKE compression func-
tion. Since our analysis does not require all the details of the hashing
process, we skip those that are not relevant to our attack. A full descrip-
tion of LAKE can be found in [2].

Basic functions – LAKE uses two functions f and g defined as follows:

f(a, b, c, d) = (a+ (b ∨ C0)) + ((c+ (a ∧ C1))≫ 7) +
((b+ (c⊕ d))≫ 13) ,

g(a, b, c, d) = ((a+ b)≫ 1)⊕ (c+ d) ,

where each variable is a 32-bit word and C0, C1 are constants.
The compression function of LAKE has three integral components:

SaltState, ProcessMessage and FeedForward. The functionality of these
components are described in Algorithms 1, 2 and 3, respectively. The
whole compression function of LAKE is described in Algorithm 4. Our



attack does not depend on the constants Ci for i = 0, . . . , 15 and hence
we do not provide their actual values here.

SaltState – This function takes as its input 256-bit initial value H,
128-bit salt S and a 64-bit block index t0‖t1. The SaltState expands the
combined state size from 256 + 128 + 64 bits to 512 bits. The indices i for
Si, Hi and Fi are reduced modulo 4, 8 and 16, respectively.

Input: H = H0‖ . . . ‖H7, S = S0‖ . . . ‖S3, t = t0‖t1
Output: F = F0‖ . . . ‖F15

for i = 0, . . . , 7 do
Fi = Hi;

end
F8 = g(H0, S0 ⊕ t0, C8, 0);
F9 = g(H1, S1 ⊕ t1, C9, 0);
for i = 10, . . . , 15 do

Fi = g(Hi, Si, Ci, 0);
end

Algorithm 1: LAKE’s SaltState

ProcessMessage This function processes a 512-bit message block by
mixing it with the 512-bit input state to produce a 512-bit output state.
ProcessMessage uses two non-linear functions f and g, each iterated 16
times as shown in Algorithm 2. The order in which message words are
processed is defined by the permutation σ. The indices i for Fi, Mi and
Wi are reduced modulo 16.

Input: F = F0‖ . . . ‖F15, M = M0‖ . . . ‖M15, σ
Output: W = W0‖ . . . ‖W15

for i = 0, . . . , 15 do
Li = f(Li−1, Fi,Mσ(i), Ci);

end
W0 = g(L15, L0, F0, L1);
L0 = W0;
for i = 1, . . . , 15 do

Wi = g(Wi−1, Li, Fi, Li+1);
end

Algorithm 2: LAKE’s ProcessMessage

FeedForward The FeedForward function of LAKE mixes 512-bit output
of ProcessMessage with the 256-bit initial value H, 128-bit salt and 64-bit



block index to yield an output of 256 bits. The index i for Si is reduced
modulo 4.

Input: W = W0‖ . . . ‖W15, H = H0‖ . . . ‖H7, S = S0‖ . . . ‖S3, t = t0‖t1
Output: H = H0‖ . . . ‖H7

H0 = f(W0,W8, S0 ⊕ t0, H0);
H1 = f(W1,W9, S1 ⊕ t1, H1);
for i = 2, . . . , 7 do

Hi = f(Wi,Wi+8, Si, Hi);
end

Algorithm 3: LAKE’s FeedForward

CompressionFunction The description of the r-round compression func-
tion of LAKE is presented in Algorithm 4. The LAKE-256 compression
function calls ProcessMessage eight times (r = 8).

Input: H = H0‖ . . . ‖H7, M = M0‖ . . . ‖M15, S = S0‖ . . . ‖S3,
t = t0‖t1

Output: H = H0‖ . . . ‖H7

F = SaltState(H,S, t);
for i = 0, . . . , r − 1 do

F = ProcessMessage(F,M, σi);
end
H = FeedForward(F,H, S, t);

Algorithm 4: LAKE’s CompressionFunction

3 Properties of the function f

We start with presenting some properties of the function f that are im-
portant for our analysis. The following observation of the rotation effect
on the modular addition allows us to simplify the analysis of the behavior
of f .

Lemma 1 ([8]) (a+ b)≫ k = (a≫ k) + (b≫ k) + α− β2n−k, where
α = 1[aRk + bRk ≥ 2k] and β = 1[aLk + bLk + α ≥ 2n−k].

From the definition, f can be written as

f(a, b, c, d) = a+ b ∨ C0 + (c≫ 7) + ((a ∧ C1)≫ 7) + (b≫ 13)

+ ((c⊕ d)≫ 13) + α1 + α2 − β1225 − β2219, (1)



where

α1 = 1[cL7 + (a ∧ C1)L7 ≥ 27], β1 = 1[cR7 + (a ∧ C1)R7 + α1 ≥ 225],

α2 = 1[bL13 + (c⊕ d)L13 ≥ 213], β2 = 1[bR13 + (c⊕ d)R13 + α2 ≥ 219].

Note that α2 and β2 are independent of a. Consider now the difference of
the outputs of f induced by the difference in the variable a, i.e.

∆f = f(a′, b, c, d)− f(a, b, c, d)
= [a′ + (a′ ∧ C1) + α′1 − β′1225]− [a+ (a ∧ C1) + α1 − β1225]
= a′ + ((a′ ∧ C1)≫ 7)− [a+ ((a ∧ C1)≫ 7)] + (α′1 − α1)− (β′1 − β1)225

= fa(a′)− fa(a) + (α′1 − α1)− (β′1 − β1)225,

where

fa(a) def= a+ ((a ∧ C1)≫ 7) .

A detailed analysis (cf. Lemma 4) shows that given random a, a′ and c,
P (α1 = α′1, β1 = β′1) = 4

9 , so with probability 4
9 , a collision of fa is also

a collision of f when input difference is in a only. Let us call this a carry
effect. However, if we have control over the variable c, we can adjust the
values of α1, α

′
1, β1, β

′
1 and always satisfy this condition. From here we

can see that (a + b) ≫ k is not a good mixing function when we are
considering modular differences.

This reasoning can be repeated for differences in the variable b and
similarly for differences in a pair of the variables c, d. It is easy to see that
also for those cases, with a high probability, collisions in f happen when
the following functions collide

fb(b)
def= b ∨ C0 + (b≫ 13) ,

fcd(c, d) def= (c≫ 7) + ((c⊕ d)≫ 13) .

So, when we follow differences in only one or two variables, we can
consider only those variables without the side effects from other variables.
we summarize these in the following statement.

Observation 1 Collisions or output differences of f for input differences
in one variable can be made independent from the values of other vari-
ables.



We denote the set of solutions for fa and fb with respect to input
pairs and modular differences as

Sfa
def= {(x, x′)|fa(x) = fa(x′)} ,

SAfa
def= {x− x′|fa(x) = fa(x′)} ,

Sfb
def= {(x, x′)|fb(x) = fb(x′)} ,

SAfb
def= {x− x′|fb(x) = fb(x′)} .

Choose the odd elements from SAfb and define them to be SAfbodd . Note that
we can easily precompute all the above solution sets using 232 evaluations
of the appropriate functions and 232 words of memory (or some more
computations with proportionally less memory).

4 Finding high-level differentials

The starting idea of our analysis is to inject differences in the input
chaining values and salt and then cancel them within the first iteration
of ProcessMessage. Consequently, no difference appears throughout the
compression function until the FeedForward step. If the differences in the
chaining values and salt variables are selected appropriately, we can hope
they cancel each other, so we get no difference at the output of the com-
pression function.

To find a suitable differential for the attack, an approach similar to the
one employed to analyse FORK-256 [12, Section 6] can be used. We model
each of the registers a, b, c, d, as a single binary value δa, δb, δc, δd that
denotes whether there is a difference in the register or not. Moreover, we
assume that we are able to make any two differences cancel each other to
obtain a model that can be expressed in terms of arithmetics over F2. We
model the differential behavior of function g simply as δg(δa, δb, δc, δd) =
δa⊕ δb⊕ δc⊕ δd, where δa, δb, δc, δd ∈ F2, as this description seems to be
functionally closest to the original. For example, it is impossible to get
collisions for g when only one variable has differences and such a model
ensures that we always have two differences to cancel each other if we
need no output difference of g. When deciding how to model f(a, b, c, d),
we have more options. First, note that when looking for pure pseudo-
collisions, there are no differences in message words and the last parameter
of f is a constant, so we need to deal with differences in only two input
variables a and b. Since we can find collisions for f when differences are
only in a single variable (either a or b), we can model f not only as



δf(δa, δb) = δa ⊕ δb but more generally as δf(δa, δb) = γ0(δa) ⊕ γ1(δb),
where γ0, γ1 ∈ F2 are fixed parameters. Let us call the pair (γ0, γ1) a
γ-configuration of δf and denote it by δf[γ0,γ1], As an example, δf[1,0]

corresponds to δf(δa, δb) = δa, which means that whenever a difference
appears in register b, we need to use the properties of f to find collisions
in the coordinate b. For functions f appearing in FeedForward, we use the
model δf = δa⊕ δb⊕ δc⊕ δd.

With these assumptions, it is easy to see that such a model of the
whole compression function is linear over F2 and finding the set of input
differences (in chaining variables H0, . . . ,H7 and salt registers S0, . . . , S3)
is just a matter of finding the kernel of a linear map. Since we want to
find only simple differentials, we are interested in those that use as few
registers as possible. To find them, we can think of all possible states of
the linear model as a set of codewords of a linear code over F2. That way,
finding differentials affecting only few registers corresponds to finding low-
weight codewords. So instead of an enumeration of all 212 possible states
of of H0, . . . ,H7, S0, . . . , S3 for each γ-configuration of f functions, this
can be done more efficiently by using tools like MAGMA [6].

We implemented this method in MAGMA and performed such a
search for all possible γ-configurations of the 16 functions f appearing
in the first ProcessMessage. We used the following search criteria: (a) as
few active f functions as possible; (b) as few active g functions as possible;
(c) non-zero differences appear only in the first few steps using function g
as it is harder to adjust the values for later steps due to lack of variables
we control; (d) we prefer γ-configurations [1, 0] and [0, 1] over [1, 1] be-
cause it seems easier to deal with differences in one register than in two
registers simultaneously.

The optimal differential for this set of criteria contains differences
in registers H0, H1, H4, H5, S0, S1 with the following γ-configurations of
the first seven f functions in ProcessMessage: [0, 1], [1, 1], [0, 1], [·, ·], [0, 1],
[1, 1], [0, 1] (Note a simpler configuration (H0, H4, S0) is not possible here).
Unfortunately, the system of constraints resulting from that differential
has no solutions, so we introduced a small modification of it, adding
differences in registers H2, H6, S2, ref. Figure 1. After introducing these
additional differences, we gain more freedom at the expense of dealing
with more active functions and we can find solutions for the system of
constraints. The labels for all constraints are defined Figure 1, we will
refer to them throughout the text.



SaltState
input: H0, . . . , H7, S0, . . . , S3, t0, t1
∆F0 ←∆H0

∆F1 ←∆H1

∆F2 ←∆H2

F3 ← H3

∆F4 ←∆H4

∆F5 ←∆H5

∆F6 ←∆H6

F7 ← H7

F8 ← g(∆H0,∆S0 ⊕ t0, C8, 0) {s1}
F9 ← g(∆H1,∆S1 ⊕ t1, C9, 0) {s2}
F10 ← g(∆H2,∆S2, C10, 0) {s3}
F11 ← g(H3, S3, C11, 0)
F12 ← g(∆H4,∆S0, C12, 0) {s4}
F13 ← g(∆H5,∆S1, C13, 0) {s5}
F14 ← g(∆H6,∆S2, C14, 0) {s6}
F15 ← g(H7, S3, C15, 0)
output: F0, . . . , F15

FeedForward
input: R0, . . . , R15, H0, . . . , H7,

S0, . . . , S3, t0, t1
H0 ← f(R0, R8,∆S0⊕t0,∆H0) {f1}
H1 ← f(R1, R9,∆S1⊕t1,∆H1) {f2}
H2 ← f(R2, R10,∆S2,∆H2) {f3}
H3 ← f(R3, R11, S3, H3)
H4 ← f(R4, R12,∆S0,∆H4) {f4}
H5 ← f(R5, R13,∆S1,∆H5) {f5}
H6 ← f(R6, R14,∆S2,∆H6) {f6}
H7 ← f(R7, R15, S3, H7)
output: H0, . . . , H7

ProcessMessage
input: F0, . . . , F15, M0, . . . ,M15, σ
L0 ← f(F15,∆F0,Mσ(0), C0) {p1}
∆L1 ← f(L0,∆F1,Mσ(1), C1) {p2}
∆L2 ← f(∆L1,∆F2,Mσ(2), C2) {p3}
L3 ← f(∆L2, F3,Mσ(3), C3) {p4}
L4 ← f(L3,∆F4,Mσ(4), C4) {p5}
∆L5 ← f(L4,∆F5,Mσ(5), C5) {p6}
∆L6 ← f(∆L5,∆F6,Mσ(6), C6) {p7}
L7 ← f(∆L6, F7,Mσ(7), C7) {p8}
L8 ← f(L7, F8,Mσ(8), C8)
...
L15 ← f(L14, F15,Mσ(15), C15)

W0 ← g(L15, L0,∆F0,∆L1) {p9}
W1 ← g(W0,∆L1,∆F1,∆L2) {p10}
W2 ← g(W1,∆L2,∆F2, L3) {p11}
W3 ← g(W2, L3, F3, L4)
W4 ← g(W3, L4,∆F4,∆L5) {p12}
W5 ← g(W4,∆L5,∆F5,∆L6) {p13}
W6 ← g(W5,∆L6,∆F6, L7) {p14}
W7 ← g(W6, L7, F7, L8)
...
W15 ← g(W14, L15, F15,W0)
output: W0, . . . ,W15

Fig. 1. High-level differential used to look for collisions

5 Algorithm and Analysis

The process of finding the actual pair of inputs following the differential
can be split into two phases. The first one is to solve the constraints from
ProcessMessage to get the required F s (same as Hs used in SaltState).
Then, in the second phase, we look back at the SaltState to find appro-
priate salts to have constraints in FeedForward satisfied. We can do this
because the output from ProcessMessage has only a small effect on the
solutions for FeedForward.



5.1 Solving the ProcessMessage

An important feature of our differentials in ProcessMessage is that it
can be separated into two disjoint groups, i.e. (F0, F1, F2, L1, L2) and
(F4, F5, F6, L5, L6). Differentials for these two groups have exactly the
same structure. Thanks to that, if we can find values for the differences
in the first group, we can reuse them for the second group by making
corresponding registers in the second group equal to the ones from the first
group. Following Observation 1 we can safely say that the second group
also follows the differential path with a high probability. Algorithm 5 gives
the details of solving the constrains in the first group of ProcessMessage.

1: Randomly pick (L2, L
′
2) ∈ Sfa

2: repeat
3: Randomly pick F1, compute F ′1 = −1−∆L2 − F1

4: until fb(F1)− fb(F ′1) ∈ SAfbodd

5: repeat
6: Randomly pick L1, F2

7: Compute L′1 = fb(F
′
1)− fb(F1) + L1

8: Compute F ′2 so that fb(F
′
2) = ∆L2 + fa(L1)− fa(L′1) + fb(F2)

9: until p11 is fulfilled
10: Pick (F0, F

′
0) ∈ Sfb so that ∆F0 +∆L1 = 0

Algorithm 5: Find solutions for the first group of differences of
ProcessMessage

Correctness We show that after the execution of Algorithm 5, it indeed
finds values conforming to the differential. In other words, we show that
constraints p1− p4 and p9− p11 hold. Referring to Algorithm 5:

Line 1: (L2, L
′
2) is chosen in such a way that p4 is satisfied.

Line 3: F ′1 is computed in such a way that (F1 +L2)⊕ (F ′1 +L′2) = −1
Line 4:∆L1 = ∆fb(F1) is odd together with (F1+L2)⊕(F ′1+L′2) = −1.
This implies that p10 could hold, which will be discussed later in
Lemma 2. The fact that ∆L1 ∈ SAfbodd makes it possible that p1 and
p9 hold.
Line 7: L′1 is computed in such a way that p2 holds.
Line 8: F ′2 is computed in such a way that p3 holds.
Line 9: after exiting the loop p11 holds.
Line 10: (F0, F

′
0) is chosen in such a way that p1, p9 hold.



Probability and Complexity Analysis Let us consider the probabil-
ity for exiting the loops in Algorithm 5. We require fa(F1) − fa(F ′1) ∈
SAfbodd and the constraint p11 to hold. The size of the set SAfbodd is around
211. By assuming that fa(F1)− fa(F ′1) is random, the probability to have
it in SAfbodd is 2−21. This needs to be done only once. Now we show that the
constraint p11 is satisfied with the probability 2−24. We have sufficiently
many choices, i.e. 264, for (L1, F2) to have p11 satisfied. The constraint p11
requires that [(W1+L2)≫ 1]⊕(F2+L3) = [(W1+L′2])≫ 1]⊕(F ′2+L3),
which is equivalent to [(W1+L2)⊕(W1+L′2)]≫ 1 = (F2+L3)⊕(F ′2+L3),
where W1, L2, L

′
2, F2, F

′
2 are given from previous steps. We have choices

for L3 by choosing an appropriate Mσ(3). The problem could be rephrased
as follows: given random A and D, what is the probability to have at least
one x such that x⊕ (x+D) = A?

To answer this question, let us note first that x ⊕ y = (1, . . . , 1) iff
x + y = −1. This is clear as y = x and always (x ⊕ x) + 1 = 0. Now we
can show the following result.

Lemma 2 For any odd integer d, there exist exactly two x such that
x ⊕ (x + d) = (1, . . . , 1). They are given by x = (−1 − d)/2 and x =
(−1− d)/2 + 2n−1.

Proof. x⊕ (x+ d) = −1 implies that x+ x+ d = −1 + k2n for an integer
k, so x = −1−d+k2n

2 . Only when d is odd, x = −1−d
2 + k2n−1 an integer

and a solution exists. As we are working in modulo 2n, k = 0, 1 are the
only solutions. �

Following the lemma, given an odd ∆L1 and (F1 +L2)⊕ (F ′1 +L′2) = −1,
we can always find two W0 such that (W0 + L1) ⊕ (W0 + L′1) = −1,
then p10 follows. Such W0 could be found by choosing an appropriate
L15 which could be adjusted by choosing Mσ(15) (if such Mσ(15) does not
exist, although the chance is low, we can adjust L14 by choosing Mσ(14)).

Coming back to the original question, consider A as “0”s and blocks
of “1”s. Following the lemma above, for Ai = 0, we need Di = 0 (except
“0” as MSB followed by a “1”); for a block of “1”s, say Ak = Ak+1 =
· · · = Ak+l = 1, the condition that needs to be imposed on D is Dk = 1.
By counting the number of “0”s and the number of blocks of “1”s, we
can get number of conditions needed. For an n-bit A, the number is 3n

4
on average (cf. Appendix Lemma 3).

For LAKE-256, it is 24, so the probability for p11 to hold is 2−24. We
will need to find the appropriate L3 so that p11 holds. Note we have con-
trol over L3 by choosing the appropriate Mσ(3). For each differential path



found, we need to find message words fulfilling the path. The probability
to find a correct message is 1− 1

e for the first path by assuming fc is ran-
dom (because for a random function from n bits to n bits the probability
that a point from the range has a preimage is 1 − 1

e ), and 4
9 for second

path because of the carry effect. For example, given L0, F15, F0, C0, the
probability to have Mσ(0) so that L0 = f(F15, F0,Mσ(0), C0) is 1 − 1

e .
The same Mσ(0) satisfies L′0 = f(F ′15, F

′
0,Mσ(0), C0) (note for this case

F ′15 = F15 and L0 = L′0) is 4
9 . So for each message word, the probability

for it to fulfill the differential path is 2−2. We have such restrictions on
Mσ(0) −Mσ(2),Mσ(4) −Mσ(6) (we don’t have such restriction on Mσ(3)

and Mσ(7) because we still have control over F3 and F7), so overall com-
plexity for solving ProcessMessage is 5 · 236 in terms of calls to fa or fb.
The compression function of LAKE-256 calls functions f and g 136 times
each and fa, fb contain less than half of the operations used in f . So the
complexity for this part of the attack is 230 in terms of the number of
calls to the compression function.

Solving the second group of ProcessMessage After we are done with
the first group, we can have the second group of differential path for free
by assigning Fi+4 = Fi, F ′i+4 = F ′i for i = 0, 1, 2 and Li+4 = Li, L

′
i+4 = L′i

for i = 1, 2. In this way, we can have p5 − p8 and p12 automatically
satisfied. Similarly, for constraint p13 and p14, we will need appropriate
W4 and L7. We have control over W4 by choosing F3 and L4 (note we need
to keep L3 stable to have p11 satisfied, this can be achieved by choosing
appropriate Mσ(3)). We also have control over L7 by choosing Mσ(7).

That way we can force the difference to vanish within the first Pro-
cessMessage. Table 1 shows an example of a set of solutions we found on a
standard PC (Core2 Duo 2.33GHz with 4GB memory) using this method.

5.2 Near collisions

In this section we explain how to get a near collision directly from colli-
sions of ProcessMessage. Refer to SaltState and FeedForward in Fig. 1.
Note that the function g(a, b, c, d) with differences at positions (a, b)
means ∆a + ∆b = 0, then constraints (s1 − s6) in SaltState can be sim-
plified to:

s1 : ∆H0 +∆S0 = 0 (2)
s2 : ∆H1 +∆S1 = 0 (3)
s3 : ∆H2 +∆S2 = 0 (4)



Table 1. Example of a pair of chaining values F , F ′ and a message block M that yield
a collision in ProcessMessage

F 1E802CB8 799491C5 1FE58A14 07069BED 1E802CB8 799491C5 1FE58A14 74B26C5B

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

F ′ C0030007 B767CE5E 30485AE7 07069BED C0030007 B767CE5E 30485AE7 74B26C5B

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

M 683E64F1 9B0FC4D9 0E36999A A9423F09 27C2895E 1B76972D BEF24B1C 78F25F25

00000000 00000000 00000000 00000000 00000000 00000000 657C34F5 3A992294

L D0F3077A 31A06494 395A0001 10E105FC 82026885 31A06494 395A0001 10E105FC

ECF7389A 2F4D466F 9FFC71E1 54BAFAE6 FCDDBCDB E635FFB7 5D302719 CD102144

L′ D0F3077A 901D9145 95A99FDB 10E105FC 82026885 901D9145 95A99FDB 10E105FC

ECF7389A 2F4D466F 9FFC71E1 54BAFAE6 FCDDBCDB E635FFB7 5D302719 CD102144

L⊕ 00000000 A1BDF5D1 ACF39FDA 00000000 00000000 A1BDF5D1 ACF39FDA 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

W 1F210513 1A8E2515 1932829B 1C00C039 1F210513 1A8E2515 1932829B F4A060BE

5F868AC3 D8959978 E8F3FF4A E20AC1C3 8941C0F8 EA8BC74E 6ECDD677 82CFFECE

W ′ 1F210513 1A8E2515 1932829B 1C00C039 1F210513 1A8E2515 1932829B F4A060BE

5F868AC3 D8959978 E8F3FF4A E20AC1C3 8941C0F8 EA8BC74E 6ECDD677 82CFFECE

W⊕ 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Note that Hi+4 = Hi, H
′
i+4 = H ′i for i = 0, 1, 2 as required by ProcessMes-

sage, Let t0 = t1 = 0, then conditions s4− s6 follow s1− s3. Conditions
in FeedForward could be simplified to:

f1 : fcd(S0, H0) = fcd(S′0, H
′
0) (5)

f2 : fcd(S1, H1) = fcd(S′1, H
′
1) (6)

f3 : fcd(S2, H2) = fcd(S′2, H
′
2) (7)

and f4 − f6 follow f1 − f3. This set of constraints can be grouped into
three independent sets (si, fi) for i = 0, 1, 2 each one of the same type,
i.e. ∆H +∆S = 0 and fcd(S,H) = fcd(S′, H ′).

To find near collisions, we proceed as follows. First we choose those Si
with S′i = Si−∆Hi so that the Hamming weight of fcd(S′i, H

′
i)−fcd(Si, Hi)

is small for i = 0, 1, 2. Thanks to that, only small differences are expected
in the final output of the compression function, due to the fact that in-
puts from a, b of function f have only carry effect to the final difference
of f when inputs differ in c, d only. We choose values of Si without going
through the compression function, so the number of rounds of the com-
pression function does not affect our algorithm. Further, the complexity
for finding values of Si is much smaller than that of ProcessMessage, so
it does not increase the 230 complexity. Experiments show that, based on
the collision in ProcessMessage, we can have near collisions with very little
additional effort. Table 2 shows a sample result with 16-bit of differences
out of 256 bits of output.



5.3 Extending the attack to full collisions

It is clear that finding full collisions is equivalent to solving equations (5)-
(7). The complexity to solve a single equation is around 212 (cf. Lemma
5 in Appendix). Looking at Algorithm 5, (s1, f1) can be checked when
F1 and F ′1 are chosen, so it does not affect the overall complexity. The
pair (s0, f0) can be checked immediately after (L1, L

′
1) is given as show

in Line 7 of Algorithm 5. Similarly, (s2, f2) can be checked after (F2, F
′
2)

is chosen in Line 8. So the overall complexity for our algorithm to get a
collision for the full compression function is 254.

Table 2. Example of a pair of chaining values F , F ′, salts S, S′ and a message block
M that yield near collision in CompressionFunction with 16 bits differences out of 256
bits output. Hs are final output.

F 7B2000C4 23E79FBD 73D102C3 88E0E02B 7B2000C4 23E79FBD 73D102C3 00000000

F ′ 801FF801 18C0005E 846FD480 88E0E02B 801FF801 18C0005E 846FD480 00000000

S 00010081 23043423 03C5B03E D44CFD2C

S′ FB010944 2E2BD382 F326DE81 D44CFD2C

M 00000012 64B31375 CFA0A77E 8F7BE61F 1E30C9D3 6A9FB0DA 290E506E 3AAE159C

00000000 00000000 00000000 00000000 00000000 00000000 00000000 1B89AA75

H 261B50AA 3873E2BE BDD7EC4D 7CE4BFF8 007BB4D4 869473FF 833D9EFA 9DABEDDA

H′ 361150AA 387BE23E FDD6E84D 7CE4BFF8 1071B4D4 869C737F C33C9AFA 9DABEDDA

H⊕ 100A0000 00080080 40010400 00000000 100A0000 00080080 40010400 00000000

5.4 Reducing the Complexity

In this subsection, we show a better way (rather than randomly) to choose
(L2, L

′
2) so that the probability for the constraint p11 to hold increases,

which reduces the complexity for collision finding to 242.
Note the constraint p11 is as follows: given W1, L2, L

′
2, what is the

probability to have L3 and (F2, F
′
2) so that ((W1 + L2)⊕ (W1 + L′2))≫

1 = (F2 + L3) ⊕ (F ′2 + L3). We calculate the probability by counting
the number of 0s and block of 1s in ((W1 + L2)⊕(W1 + L′2))≫ 1 (let’s
denote it as α = #(((W1+L2)⊕(W1+L′2))≫ 1)). Now we show that the
number α can be reduced within the first loop of the algorithm, i.e. given
only (L2, L

′
2) and (F1, F

′
1), we are able to get the count α and hence, by

repeating the loop sufficiently many times, we can reduce the count α to
a certain number less than 24 (we don’t fix it here, but will give it later).

Note that to find α, we still needW1 besides (L2, L
′
2). Now we showW1

can be computed from (L2, L
′
2) and (F1, F

′
1) only. W1

def= ((W0 + L1)≫



1) ⊕ (F1 + L2), where we restrict (W0 + L1) ⊕ (W0 + L′1) = −1. Denote
S = (W0 +L1), then the equation can be derived to S⊕ (S+∆L1) = −1,
where ∆L1

def= fb(F ′1)− fb(F1).
So let’s make 2y more effort in the first loop so that α is reduced by y.

The probability for first loop to exit becomes 2−33−y and for the second
loop, the probability becomes 2−60+y. Choosing the optimal value y = 13
(y must be an integer), the probabilities are 2−46 and 2−47, respectively.
Hence this gives final complexity 242 for collision searching.

6 Comparing with other attacks

Besides the (H,S)-type (differences fall in chaining value H and salt S)
attack here, Biryukov et al. [5] gives (H, t)-type collision attack and (H)-
type near collision attack; both attacks are focused on the compression
function of LAKE with complexities of 240 and 2105, respectively.

We note that the (H, t)-type collision attack of [5] on the compression
function of LAKE would never extend to the hash function LAKE unless
other types of collisions for compression function are found that could
extend to the hash function LAKE. When we try to extend the (H, t)-
type collision attack on the compression function to the hash function,
the colliding block must be the last block for each message. Since a colli-
sion on the hash function could have been spanned at least one message
block, the block next to the “colliding block” will introduce difference
in the chaining value due to the fact that block indices ‘t’ are different.
However, in the (H, t)-type collision attack of [5], the triplet (H,M,S) are
same after the “colliding block”(H contains no difference, this does not
satisfy configuration of the attack, hence introduces differences in output
H unless other types of collision attack is found). This means the lengths
of the two colliding messages for the LAKE hash function are different.
Note that this length is encoded into the last block of the message as
part of the padding rule, which means that the last block of the padded
message must differ. This contradicts the assumption of the attack that
the colliding messages have no difference.

We note that our (H,S)-type collision attack on the compression
function of LAKE is not limited by the above restriction to extend it
to the hash function. While salt values are controlled by the user in the
(H,S)-type collision attack, they are not encoded into the message during
padding. To summaries, though there is no guarantee that our (H,S)-type
collision attack on the LAKE compression function extends to its hash



function, this extension is certainly not ruled out as in the (H, t)-type
collision attack of [5].

7 Conclusions and future work

In this paper we showed how to find near collisions in practice and full
collisions with complexity 242 for the compression function of the crypto-
graphic hash function LAKE-256.

The presented work can be extended in several directions. It is possible
that the same method of looking for high level differentials could be also
used to look for ones suitable to generate collisions for the complete hash
function.

Combining our results with results presented in [13] may lead to a
more efficient hybrid attack which may be worth investigating.

We believe that the methods presented here and used to analyse
LAKE-256 can be useful to the analyse of some of the candidates selected
for first round of NIST SHA-3 competition. Our collision attack on LAKE-
256 compression function does not extend to its successor BLAKE [1], as
the internal function used in BLAKE is bijective with respective to each
chaining variable, so internal collisions do not exist.
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A Lemmas and proofs

Lemma 3 Given random x of length n, then the average number of “0”s
and block of “1”s, excluding the case “0” as MSB followed by “1”, is 3n

4 .

Proof. Denote Cn as the sum of the counts for “0”s and blocks of “1”s
for all x of length n, denote such x as xn. Similarly we define Pn as the
sum of the counts for all x of length n with MSB “0” (let’s denote such x
as x0

n); and Qn for the sum of the counts for all x of length n with MSB
“1” (denote such x as x1

n). It is clearly that

Cn = Pn +Qn (8)

Note that there are 2n−1 many x with length n − 1, half of them with
MSB “0”, which contribute to Pn−1 and the other half with MSB “1”,
which contribute to Qn−1. Now we construct xn of length n from xn−1 of
length n− 1 in the following way:

– Append “0” with each x1
n−1, this “0” contribute to Cn once for each

x1
n−1 and there are 2n−2 many such x1

n−1.
– Append “1” with each x1

n−1, this “1” does not contribute to Cn
– Append “0” with each x0

n−1, this contributes 2n−2 to Cn
– Append “1” with each x0

n−1, this contributes 2n−2 to Cn

So overall we have Cn = Pn−1+Pn−1+2n−2+Qn−1+2n−2+Qn−1+2n−2 =
3·2n−2+2Cn−1. Note C1 = 2, solving the recursion, we get Cn = 3n+1

4 ·2
n.

Exclude the exceptional case, we have final result 3n
4 on average.

Lemma 4 Given random a, a′, x ∈ Z2n and k ∈ [0, n), α def= 1[aLk + xLk ≥
2k], α′ def= 1[a′Lk + xLk ≥ 2k], β def= 1[aRk + xRk + α ≥ 2n−k], β′ def= 1[a′Rk +
xRk + α ≥ 2n−k] as defined in Lemma 1, then P (α = α′, β = β′) = 4

9 .

Proof. Consider α and α′ first,

P (α = α′ = 1) = P (aLk + xLk ≥ 2k, a′Lk + xLk ≥ 2k)
= P (xLk ≥ (2k −min{aLk , a′Lk }))
= P (aLk ≥ a′Lk )P (xLk ≥ 2k − a′Lk ) + P (a′Lk > aLk )P (xLk ≥ 2k − aLk )

=
1
2
· 1

3
+

1
2
· 1

3

=
1
3



Similarly we can prove P (α = α′ = 0) = 1
3 , so P (α = α′) = 2

3 . Note
the definitions of β and β′ contain α and α′, but α, α′ ∈ {0, 1}, which is
generally much smaller than 2n−k, so the effect of α to β is negligible. We
can roughly say P (β = β′) = 2

3 . So P (α = α′, β = β′) = P (α = α′)P (β =
β′) = 4

9 .

Lemma 5 Given random H,H ′, then the probability to find S, S′ with
∆S +∆H = 0 and fcd(S,H) = fcd(S′, H ′) is 2−12.

Proof. Let’s expand the expression fcd(S,H) = fcd(S′, H ′):

fcd(S,H) = fcd(S′, H ′)
⇐⇒ S≫ 7 + (S ⊕H)≫ 13 = S′≫ 7 + (S′ ⊕H ′)≫ 13
⇐⇒ S≫ 7− S′≫ 7 = (S′ ⊕H ′)≫ 13− (S ⊕H)≫ 13
p=0.242⇐⇒ −∆S≫ 7 = (S′ ⊕H ′ − S ⊕H)≫ 13
⇐⇒ −∆S≪ 6 = S′ ⊕H ′ − S ⊕H
⇐⇒ S′ ⊕H ′ = S ⊕H −∆S≪ 6
⇐⇒ (S +∆S)⊕H ′ = S ⊕H −∆S≪ 6
⇐⇒ (S −∆H)⊕H ′ −∆H≪ 6 = S ⊕H

Given H,H ′ and ∆H, we are to solve S for the above. This family of
problems are solved by Paul and Preneel [16]. Experiments show that the
probability for the above to have solution is 2−12.


