
Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Cryptanalysis of LASH

Scott Contini Krystian Matusiewicz Josef Pieprzyk
Ron Steinfeld Guo Jian Ling San Huaxiong Wang

October 2007

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Table of contents

1 Introduction

2 GGH

3 LASH

4 Long Message Attack Against LASH

5 Attacking LASH with Different IV

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Motivation for LASH

LASH is cryptographic hash function designed by Bentahar,
Page, Saarinen, Silverman, and Smart.

Published in NIST’s second cryptographic hash workshop,
2006.

Based upon provable design of Goldreich, Goldwasser, and
Halevi (GGH) but modified in an attempt to make more
practical and more secure.

Aims: For output size x , should require 2
x
2 work to find

collisions and 2x work to find preimages.

LASH-x is proposed having output size of x bits, for x = 160,
256, 384 and 512.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Building upon GGH

GGH is a provable design.

If algorithm exists to find collisions in GGH, then the algorithm
can be used to find small vectors in a lattice.
Algorithm is effective for worst case lattice problems.
Since these lattice problems seem hard, we get a design for
which it is hard to find collisions.

LASH authors are not happy with GGH for two reasons:

Not efficient.
For GGH with x bit output, they claim it can be attacked in
2x/3 operations, or even 2x/4 for certain parameters.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

GGH Construction

Let H be an m by n matrix with entries in Zq.

Assume m log q < n < q
2m4 and q = O(mc) for const c > 0.

Let message consist of bits s1, ..., sn ∈ {0, 1}n. Let s be vector
consisting of these bits.

Then hash is simply h = Hs mod q:

m

rows

n columns
︷ ︸︸ ︷








· · · H · · ·









·















s1

...

...

sn















=










h1

...

hm










Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Attacking GGH

Despite provability, LASH authors claim that it can be
attacked in O(2x/3) when embedded in Merkle-Damg̊ard
iteration, where x = m log q is size of output.

They sketch how to attack GGH when arithmetic is done over
Z256.

Attack is time-memory tradeoff based upon Pollard iteration:

Choose messages such that the hashes are confined to some
subspace S with size significantly smaller than 2x .
After

√

|S | iterations, a collision is expected (birthday
paradox).
Find collision with Pollard rho method.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Attacking GGH: The Smaller Subspace

One can force several bits of the hash output (8m bits) to
zero by choosing message blocks cleverly:

Note that Hs mod 2 is a linear system over GF (2). With
simple linear algebra, messages can be chosen so that the least
significant output bits (m bits total) are zero.
A precomputed table is used to force further c bits to zero:

Table has 2c entries and uses m + c message bits (since table
lookup entries must also have least significant bits set to zero).
Precomputation phase requires 2c time.

So m + c of x = 8m bits are zero, yielding |S | = 27m−c .

Collision expected after 2
1
2 (7m−c) iterations.

Balancing Pollard time 2
1
2 (7m−c) with precomp time 2c ,

optimal run time is 27x/24.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Attacking GGH: Continued

Authors claimed that attack can be done in 2x/4 (but only
gave details of the 27x/24 attack).

If n (number of columns) is much greater than m2 (square of
number of rows), then least significant two bits can be forced
to zero with linear algebra.

This reduces S to size 26m−c .

Setting c = 2m = x
4 gives optimal run time.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Subtleties of GGH Attack

Attack requires large memory: 2c precomp values must be
stored. From a cost based analysis, attacks are inefficient.

They only seem to have attacked GGH for invalid parameters:

Substituting q = 256 into m log q < n < q
2m4 , we derive that

m < 2. Yet they use m ≥ 40.
The real GGH requires much larger matrix elements for
security proof to hold.

Nevertheless, this is the motivation for the LASH design:

They want to use q = 256 for efficiency.
GGH with q = 256 is not resistant to collision attacks faster
than square root time.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

From GGH to LASH

Restrict to matrix elements to Z256.

Choose number of columns to be n = 16m.

Add Miyaguchi-Preneel heuristic.

Embed the design into Merkle-Damg̊ard structure, including
standard padding techniques and putting message length
block at the end.

Throw in Lucks’ double-pipe heuristic.

They do so by adding final transform.
After processing final block (message length block), truncate
off least significant half-bytes.
So length of hash is x = 4m.

Choose an all zero initial vector (IV).

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

LASH in Merkle-Damg̊ard Structure

. . .

IV

Message Block Message Block Message Block

Output

R R R

S S S

T T T
Compress Compress Compress

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

LASH Final Transform

Final Transform chops off least significant half-byte of every
byte.

R

S

T (320 bits)
Compress

Message Length Block (last block)

Final

Transform Hash Output (160 bits). . .

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Diagram of LASH-160 Compression Function

40
bytes















R









⊕









S









+

640 columns
︷ ︸︸ ︷








· · · H · · ·









·

bitvec
︷ ︸︸ ︷






















r0

...

r319

−
s0

...

s319























Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

PseudoCode for LASH Compression Function

Input: Vectors R , S (40 bytes each) and corresponding expanded
vectors r and s (320 bits each).

For j = 0 to 39 do

Tj = Rj ⊕ Sj;

For i = 0 to 319 do

{
If (ri == 1) then

For j = 0 to 39 do

Tj = Tj + Hi ,j mod 256;
If (si == 1) then

For j = 0 to 39 do

Tj = Tj + Hi ,j+320 mod 256;
}
Return T;

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

A Fixed Point in LASH

We demonstrate an attack against LASH very similar to the
attack that LASH authors had on GGH.

Note that an input of all zeros is a fixed point of the
compression function.

If R and S are all zeros, then so is v , where v is vector
consisting of bits of R and S .
Hence R ⊕ S + H · v is all zeros.

Because the IV is all zeros, we have complete control over the
fixed point.

We can send in as many all zero message blocks as we want,
resulting in all zero intermediate outputs.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Exploiting the Fixed Point

Consider messages of the following form:

Starting out with several zero message blocks (the exact
number to be determined later).
Then one “random” message block.

Irregardless of the number of zero blocks, the intermediate
output of LASH applied to this message is a fixed value.

It is determined entirely by the one random block.
Number of zero blocks has no effect.

The only reason why we do not have trivial collisions is
because of message length block that is appended afterward.

We will choose a message length that results in the end hash
value having several bits equal to zero.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Precomputation

Consider last application of compression function:

This is where the message length block is put in.
After this compression, final transform is applied.

Let H2 be the right hand side of H.

Corresponding to the bits of S that will hold message length.

We consider 2c different message lengths (Precomputation
phase).

Only consider relatively small messages.
Hence most of bits of S are zero.

Multiply H2 by each encoded message length.

Store resulting 40 byte vectors in a file.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Visualizing the Attack

Use precomp table to determine message length ℓ so that
lower most significant half-bytes of T are zero.

R
︷ ︸︸ ︷








.

.

.

.

.









⊕

S
︷ ︸︸ ︷








ℓ
0
0
0
0









+









|
|

H1 | H2

|
|









·

















.

.

.

.
−
ℓ
0
0
0

















=

T
︷ ︸︸ ︷








.

.

.
0|.
0|.









Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Algebra of the Attack

We have T = R ⊕ S + H1r + H2s.

R (r) is fed in from previous iteration, so it known.
S (s) has zeros for all but the top bits.

We can compute bottom bits of R ⊕ S + H1r .

Then use table lookup to determine a message length ℓ that is
encoded to an s vector such that R ⊕ S + H1r + H2s has
zeros in bottom most significant half-bytes of T .

If we have 2c precomp, we can aim for bottom c/4 half-bytes
to be zero.
Because of integer carries (mod256), there is a 50% chance
that each half-byte will be 1 instead of 0.
Thus, we are only guaranteed 3c/4 bits are zero.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Analysis

Precomp takes 2c time and 2c memory.

Each iteration sets 3c/4 of x = 8m bits to zero.

Subspace is size |S | = 2x−3c/4.

Pollard iteration takes time
√

|S | = 2x/2−3c/8.

Balancing Pollard time with precomp, we solve
2c = 2x/2−3c/8.

Solution is c = (4/11)x .
Running time is 2(4/11)x : slightly more than cube root.

Similar idea works for finding preimages.

Preimages can be found in 2(4/7)x time.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Additional Remarks

Our paper has additional details (like how to deal with
padding bit).

We implemented this for LASH-160.
Using c = 28, an unoptimized implementation found messages
colliding on the last 88 bits (11 bytes) of the hash.

Note that a naive Pollard iteration would take 244 hashes to
get the same result.
Each hash requires order 40× 320 > 213 single precision
computer operations.
So a naive search would have taken > 257 computer
operations to get the same result.
We found our solution in a few days on a single Pentium.

In theory LASH-160 can be broken in 258 time/memory.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Can LASH be Patched?

Our long message attacks can be prevented by changing the
IV.

So we consider attacks against LASH with arbitrary IV:

Preimages can be computed in 27x/8 operations.
LASH compression function is trivially not a PRF when IV (or
any subset of inputs) is replaced with a secret key.

PRF is needed in security proof for HMAC.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Visualizing Preimage Attack

240 values for Rmid

R

S

Compress

Message Length Block (fixed)

Final

Transform 160 bit output

Preimage Message Block

IV (fixed)

100 bits

220 bits

R

S

Compress

180 bits

140 bits

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Step 1 of Preimage Attack

Given an output T of LASH-160, we compute 240 values for
Rmid , i.e. FT [f (Rmid ,Slen)] = T :

Slen corresponds to the encoded length block (fixed).
f represents LASH comrpession function.
FT is final transform.

This is done with time/memory tradeoff, similar to long
message attacks.

Use c = 5x/7, resulting in about 2114 time/memory.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Visualizing Step 1 of Preimage Attack

240 values for Rmid

R

S

Compress

Message Length Block (fixed)

Final

Transform 160 bit output

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Step 2 of Preimage Attack

For each possibility of the first 100 bits of the message block
and for each Rmid value:

Use “hybrid partial inversion algoirthm” to derive the
remaining 220 bits of the message block M such that f (IV , M)
matches Rmid on the top 20 bytes and all least significant bits
(180 bits total).
With probability 2−140, it will match Rmid on the remaining
140 bits.
Since this iteration runs 2140 times, we expect one match,
i.e. one preimage.
Running time is equivalent to 2140 calls to hybrid partial
inversion algorithm.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Visualizing Step 2 of Preimage Attack

Preimage Message Block

IV (fixed)

100 bits

220 bits

R

S

Compress

180 bits

240 values for Rmid

140 bits

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Hybrid Partial Inversion Algorithm Precomputations

Since R is fixed (the IV), we can write R ⊕ S + Hv = T as
H ′ · s = T’ for some matrix H ′ and vector T ′.

We first prepare a precomp table involving the bottom 180
bits of s.

Loop through 27x/8 = 2140 possibilities for the first 140 of
these bits.
Do GF (2) linear algebra to determine what last 40 bits should
be so that adding corresponding selected columns of H ′ results
in a vector y with zeros in all least significant bits.
Store bit vectors (180 bits of s) in hash table indexed by top
20 bytes of y .

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Hybrid Partial Inversion Algorithm

Given first 100 bits of s, we do GF (2) linear algebra to
determine next 40 bits of s so that adding corresponding
selected columns of H ′ agrees with T ′ in all least significant
bits.

Adding anything from hash table will preserve this agreement.

Then use hash table to find remaining 180 bits of s so that the
sum matches seven most significant bits of top 20 bytes of T ′.

Hence we match entire top 20 bytes and the least significant
bits of remaining 20 bytes (180 bits).

After 2140 tries, we expect to have a preimage!

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

LASH Compression Function is not a PRF

Assume R (r) is some secret key.

f (R ,S) = R ⊕ S + H1r + H2s.

Set all bits of S to zero: f (R , 0) = R + H1r .

Let S ′ have only first bit set and all others are zero.

The f (R ,S ′) = f (R , 0) + W + H2,1 where

W is byte vector having only the most significant bit of the
first byte set, and the remaining bits zero.
H2,1 is the first column of H2.

Thus, regardless of secret R , one can distinguish from PRF in
two queries.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

Introduction
GGH

LASH
Long Message Attack Against LASH

Attacking LASH with Different IV

Conclusion

Design of LASH is motivated by GGH, but changed to avoid
some questionable attacks and to improve practicality.

Similar attacks to what LASH authors claimed against GGH
also apply to LASH because of the naive choice of all zero IV.

Even if the IV is changed, there are still attacks against LASH
that make the design less than ideal.

Is LASH preferable to GGH?

LASH is closer to practical but has no security reduction.
Designers traded provability for practicality.
Still, LASH is far too slow compared to designs like SHA-1,
and is even slower than some provable designs.

Scott Contini, Krystian Matusiewicz, Josef Pieprzyk, Ron Steinfeld, Guo Jian, Ling San, Huaxiong WangCryptanalysis of LASH

	Introduction
	GGH
	LASH
	Long Message Attack Against LASH
	Attacking LASH with Different IV

