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Abstract. We present a new block cipher LED. While dedicated to compact hard-
ware implementation, and offering the smallest silicon footprint among comparable
block ciphers, the cipher has been designed to simultaneously tackle three addi-
tional goals. First, we explore the role of an ultra-light (in fact non-existent) key
schedule. Second, we consider the resistance of ciphers, and LED in particular, to
related-key attacks: we are able to derive simple yet interesting AES-like security
proofs for LED regarding related- or single-key attacks. And third, while we provide
a block cipher that is very compact in hardware, we aim to maintain a reasonable
performance profile for software implementation.
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1 Introduction

Over past years many new cryptographic primitives have been proposed for use in RFID
tag deployments, sensor networks, and other applications characterised by highly-constrained
devices. The pervasive deployment of tiny computational devices brings with it many in-
teresting, and potentially difficult, security issues.

Chief among recent developments has been the evolution of lightweight block ciphers
where an accumulation of advances in algorithm design, together with an increased aware-
ness of the likely application, has helped provide important developments. To some com-
mentators the need for yet another lightweight block cipher proposal will be open to ques-
tion. However, in addition to the fact that many proposals present some weaknesses [2,
10, 45], we feel there is still more to be said on the subject and we observe that it is in the
“second generation” of work that designers might learn from the progress, and omissions,
of “first generation” proposals. And while new proposals might only slightly improve on
successful initial proposals in terms of a single metric, e.g. area, they might, at the same
time, overcome other important security and performance limitations. In this paper, there-
fore, we return to the design of lightweight block ciphers and we describe Light Encryption
Device, LED.
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During our design, several key observations were uppermost in our mind. Practically
all modern block cipher proposals have reasonable security arguments; but few offer much
beyond (potentially thorough) ad hoc analysis. Here we hope to provide a more complete
security treatment than is usual. In particular, related-key attacks are often dismissed
from consideration for the application areas that typically use such constrained devices,
e.g. RFID tags. In practice this is often perfectly reasonable. However, researchers will
continue to derive cryptanalytic results in the related-key model [18, 2] and there has been
some research on how to modify or strengthen key schedules [35, 15, 39]. So having provable
levels of resistance to such attacks would be a bonus and might help confusion developing
in the cryptographic literature.

In addition, our attention is naturally focused on the performance of the algorithm
on the tag. However, there can be constraints when an algorithm is also going to be
implemented in software. This is something that has already been discussed with the
design of KLEIN [22] and in the design of LED we have aimed at very compact hardware
implementation while maintaining some software-friendly features.

Our new block cipher is based on AES-like design principles and this allows us to derive
very simple bounds on the number of active Sboxes during a block cipher encryption.
Since the key schedule is very simple, this analysis can be done in a related-key model
as well; i.e. our bounds apply even when an attacker tries to mount a related-key attack.
And while AES-based approaches are well-suited to software, they don’t always provide
the lightest implementation in hardware. But using techniques presented in [23] we aim
to resolve this conflict.

While block ciphers are an important primitive, and arguably the most useful in a
constrained environment, there has also been much progress in the design of stream ci-
phers [14, 25] and even, very recently, in lightweight hash functions [23, 4]. In fact it is this
latter area of work that has provided inspiration for the block cipher we will present here.

2 Design approach and specifications

Like so much in today’s symmetric cryptography, an AES-like design appears to be the
ideal starting point for a clean and secure design. The design of LED will inevitably have
many parallels with this established approach, and features such as Sboxes, ShiftRows,
and (a variant of) MixColumns will all feature and take their familiar roles.

For the key schedule we chose to do-away with the “schedule”, i.e. the user-provided key
is used repeatedly as is. As well as giving obvious advantages in hardware implementation,
it allows for simple proofs to be made for the security of the scheme even in the most
challenging attack model of related keys. At first sight the re-use of the encryption key
without variation appears dangerous, certainly to those familiar with slide attacks and
some of their advanced variants [7, 8]. But we note that such a simple key schedule is not
without precedent [42] though the treatment here is more complete than previously.

The LED cipher is described in Section 2.1. It is a 64-bit block cipher with two primary
instances taking 64- and 128-bit keys. The cipher state is conceptually arranged in a (4×4)
grid where each nibble represents an element from GF(24) with the underlying polynomial
for field multiplication given by X4 +X + 1.

Sboxes. LED cipher re-uses the present Sbox which has been adopted in many lightweight
cryptographic algorithms. The action of this box in hexadecimal notation is given by
the following table.
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

MixColumnsSerial. We re-use the tactic adopted in [23] to define an MDS matrix for lin-
ear diffusion that is suitable for compact serial implementation. The MixColumnsSerial
layer can be viewed as four applications of a hardware-friendly matrix A with the net
result being equivalent to using the MDS matrix M where

(A)4 =


0 1 0 0

0 0 1 0

0 0 0 1

4 1 2 2


4

=


4 1 2 2

8 6 5 6

B E A 9

2 2 F B

 = M.

The basic component of LED will be a sequence of four identical rounds used without
the addition of any key material. This basic unit, that we later call “step”, makes it easy
to establish security bounds for the construction.

2.1 Specification of LED

For a 64-bit plaintext m the 16 four-bit nibbles m0‖m1‖ · · · ‖m14‖m15 are arranged (con-
ceptually) in a square array: 

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15


This is the initial value of the cipher state and note that the state (and the key) are
loaded row-wise rather than in the column-wise fashion we have come to expect from the
AES; this is a more hardware-friendly choice, as pointed out in [38].

The key is viewed nibble-wise and loaded nibble-by-nibble into one or two arrays, K1

and K2, depending on the key length. Our primary definition is for 64- or 128-bit keys,
but other key lengths, e.g. the popular choice of 80 bits, can be padded to give a 128-bit
key thereby giving a 128-bit key array. By virtue of the order of loading the tables, any
key that is padded (with zeros) to give a 64- or 128-bit key array will effectively set unused
nibbles of the key array to 0.


k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15

 for 64-bit keys giving K1


k0 k1 k2 k3
k4 k5 k6 k7
k8 k9 k10 k11
k12 k13 k14 k15



k16 k17 k18 k19
k20 k21 k22 k23
k24 k25 k26 k27
k28 k29 k30 k31

 for 128-bit keys giving K1‖K2

The operation addRoundKey(state,Ki) combines nibbles of subkey Ki with the state,
respecting array positioning, using bitwise exclusive-or. There is no key schedule, or rather
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this is the sum total of the key schedule, and the arrays K1 and, where appropriate, K2 are
repeatedly used without modification. Encryption is described using the previously men-
tioned addRoundKey(state,Ki) and a second operation, step(state). This is illustrated
in Figure 1.

one step

P 4 rounds

K1

4 rounds

K1

4 rounds

K1 K1

4 rounds

K1 K1

C

P 4 rounds

K1

4 rounds

K2

4 rounds

K1 K2

4 rounds

K2 K1

C

Fig. 1. The use of key arrays K1 and K2 in LED showing both a 64-bit key array (top) and a
128-bit key array (bottom).

The number of steps during encryption depends on whether there are one or two key
arrays.

for i = 1 to 8 do {
addRoundKey(state,K1)

step(state)
}
addRoundKey(state,K1)

for i = 1 to 6 do {
addRoundKey(state,K1)

step(state)
addRoundKey(state,K2)

step(state)
}
addRoundKey(state,K1)

for 64-bit key arrays for 128-bit key arrays

The operation step(state) consists of four rounds of encryption of the cipher state.
Each of these four rounds uses, in sequence, the operations AddConstants, SubCells,
ShiftRows, and MixColumnsSerial as illustrated in Figure 2.

AddConstants. A round constant is defined as follows. At each round, the six bits (rc5,
rc4, rc3, rc2, rc1, rc0) are shifted one position to the left with the new value to rc0
being computed as rc5⊕rc4⊕1. The six bits are initialised to zero, and updated before
use in a given round. The constant, when used in a given round, is arranged into an
array as follows: 

0 (rc5‖rc4‖rc3) 0 0
1 (rc2‖rc1‖rc0) 0 0
2 (rc5‖rc4‖rc3) 0 0
3 (rc2‖rc1‖rc0) 0 0


The round constants are combined with the state, respecting array positioning, us-
ing bitwise exclusive-or. The values of the (rc5, rc4, rc3, rc2, rc1, rc0) constants for each
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Fig. 2. An overview of a single round of LED.

round are given in the Appendix.

SubCells. Each nibble in the array state is replaced by the nibble generated after using
the present Sbox.

ShiftRow. Row i of the array state is rotated i cell positions to the left, for i = 0, 1, 2, 3.

MixColumnsSerial. Each column of the array state is viewed as a column vector and
replaced by the column vector that results after post-multiplying the vector by the
matrix M (see earlier description in this section).

The final value of the state provides the ciphertext with nibbles of the “array” being
unpacked in the obvious way. Test vectors for LED are provided in the Appendix.

3 Security Analysis

The LED block cipher is simple to analyze and this allows us to precisely evaluate the
necessary number of rounds to ensure proper security.

Our scheme is meant to be resistant to classical attacks, but also to the type of related-
key attacks that have been effective against AES-256 [9] and other ciphers [2]. We will even
study the security of LED in a hash function setting, i.e. when it is used in a Davies-
Meyer or similar construction with a compression function based on a block cipher. In
other words, we will consider attackers that have full access to the key(s) and try to
distinguish the fixed permutations from randomly chosen ones. While this analysis provides
additional confidence in the security of LED, it is not our intent to propose a hash function
construction.

We chose a conservative number of rounds for LED. For example, when using a 64-
bit key array we use 32 AES-like rounds that are grouped as eight “big” add-key/apply-
permutation steps that are each composed of four AES-like rounds. Further, our security
margins are even more conservative if one definitively disregards related-key attacks; as
will be seen with the following proofs.

3.1 The key schedule

The LED key schedule has been chosen for its simplicity and security. Because it is very
simple to analyze, it allows us to directly derive a bound on the minimal number of active

Appeared in B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 326–341.
c© Springer-Verlag Berlin Heidelberg 2011



Table 1. Minimal number of active Sboxes and upper bounds on the best differential path and
linear approximation probability for the 64-bit key array and 128-bit key array versions of LED
(in both the single-key (SK) and related-key (RK) settings).

LED-64 SK LED-64 RK LED-128 SK LED-128 RK

minimal no. of active Sboxes 200 100 300 150

differential path probability 2−400 2−200 2−600 2−300

linear approx. probability 2−400 2−200 2−600 2−300

Sboxes, even in the scenario of related-key attacks. The idea is to first compute a bound
on the number of active big steps (each composed of 4 AES-like rounds). Then, using the
well known 4-round proofs for the AES, one can show that one active big step will contain
at least 25 active Sboxes. Note that this bound is tight as we know 4-round differential
paths containing exactly this number of active Sboxes.

When not considering related-key attacks, we directly obtain that any differential path
for LED will contain at least br/4c · 25 active Sboxes. For related-key attacks, we have to
distinguish between the different key-size versions.

64-bit key version. If we assume that differences are inserted in the key input, then
every subkey K1 in the 64-bit key variant of LED will be active. Therefore, one can easily
see that it is impossible to force two consecutive non-active big steps and we are ensured
that for every two big steps at least one is active. Overall, this shows that any related-key
differential path contains at least br/8c · 25 active Sboxes.

128-bit key version. If we assume that differences are inserted in the key input, then
we have to separate two cases. If the two independent parts K1 and K2 composing the
key both contain a difference, then we end up with exactly the same reasoning as for
the 64-bit key variant: at least br/8c · 25 active Sboxes will be active. If only one of
the two independent parts composing the key contains a difference, then subkeys with
and without differences are alternatively incorporated after each big step. The non-active
subkeys impact on the differential paths is completely void and thus in this case one can
view LED as being composed of even bigger steps of 8 AES-like rounds instead. The very
same reasoning then applies again: it is impossible to force two consecutive of these new
bigger steps to be inactive and therefore we have at least br/16c ·50 active Sboxes ensured
for any differential path (since the best differential path for 8 rounds trivially contains 50
active Sboxes).

We summarize in Table 1 the results obtained for the two main versions of LED, both for
single-key attacks and related-key attacks. Note that the bounds on the number of active
Sboxes are tight as we know differential paths meeting them (for example the truncated
differential path for each active big step can simply be any of the 4-round path for AES-128
with 25 active Sboxes).

For LED-128, since we are using two independent key parts one can peel off the first and
last key addition (which is always the first key part K1). Thus, an attacker can remove
one big step on each side of the cipher, for a total of 8 rounds, with a complexity of 264

tries on K1. This partially explains why the versions of LED using two independent key
parts have 16 more rounds than for LED-64.
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3.2 Differential/Linear cryptanalysis

Since LED is an AES-like cipher, one can directly reuse extensive work that has been done
on the AES. We will compute a bound on the best differential path probability (where all
differences on the input and output of all rounds are specified) or even the best differential
probability (where only the input and output differences are specified), in both single- and
related-key settings.

As the best differential transition probability of the PRESENT Sbox is 2−2, using the
previously proven minimal number of active Sboxes we deduce that the best differential
path probability on 4 active rounds of LED is upper bounded by 2−2·25 = 2−50. By adapting
the work from [40], the maximum differential probability for 4 active rounds of LED is upper
bounded by

max

 max
1≤u≤15

15∑
j=1

{DPS(u, j)}5, max
1≤u≤15

15∑
j=1

{DPS(j, u)}5


4

= 2−32

where DPS(i, j) stands for the differential probability of the Sbox to map the difference
i to j. The duality between linear and differential attacks allows us to similarly apply the
same approaches to compute a bound on the best linear approximation. Over four rounds
the best linear approximation probability is upper bounded by 2−50 and the best linear
hull probability is upper bounded by 2−32.

Since we previously proved that all rounds will be active in the single-key scenario
and half of them will be active in the related-key scenario, we can easily compute the
upper bounds on the best differential path probability and the best linear approximation
probability for each version of LED (see Table 1). Note that this requires that random
subkeys be used at each round to make the Sbox inputs independant. In the case of LED
the subkeys are simulated by the addition of round constants and the derived bounds give
a very good indication of the quality of the LED internal permutation with regards to linear
and differential cryptanalysis.

3.3 Cube testers and algebraic attacks

We applied the most recent developed cube testers [3] and its zero-sum distinguishers to
the LED fixed-key permutation, the best we could find within practical time complexity
is at most three rounds (with the potential to be doubled under a meet-in-the-middle
scenario). Note, in case of AES, “zero-sum” property is also referred as “balanced”, found
by the AES designers [16], in which 3-round balanced property is shown. To the best of our
knowledge, there is no balanced property found for more than 3 AES rounds.

The PRESENT Sbox used in LED has algebraic degree 3 and one can check that 3 ·
br/4c · 25 ≫ 64 for all LED variants. Moreover, the PRESENT Sbox is described by e =
21 quadratic equations in the v = 8 input/output-bit variables over GF (2). The entire
system for a fixed-key LED permutation therefore consists of (16 · r · e) quadratic equations
in (16 · r · v) variables. For example, in the case of the 64-bit key version, we end up
with 10752 equations in 4096 variables. In comparison, the entire system for a fixed-key
AES permutation consists of 6400 equations in 2560 variables. While the applicability of
algebraic attacks on AES remains unclear, those numbers tends to indicate that LED offers
a higher level of protection.
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3.4 Other cryptanalysis

The slide attack is a block cipher cryptanalysis technique [7] that exploits the degree of
self-similarity of a permutation. In the case of LED, all rounds are made different thanks
to the round-dependent constants addition, which makes the slide attack impossible to
perform.

Integral cryptanalysis is a technique first applied on SQUARE [17] that is particularly
efficient against block ciphers based on substitution-permutation networks, like AES or LED.
The idea is to study the propagation of sums of values; something which is quite powerful
on ciphers that only use bijective components. As for AES, the best integral property can
be found on three rounds, or four rounds with the last mixing layer removed. Thus, two
big LED steps avoid any such observation. Considering the large number of rounds of LED,
we believe integrals attacks are very unlikely to be a threat.

Rotational cryptanalysis [28] studies the evolution of a rotated variant of some in-
put words through the round process. It was proven to be quite successful against some
Addition-Rotation-XOR (ARX) block ciphers and hash functions. LED is an Sbox-oriented
block cipher and any rotation property in a cell will be directly removed by the applica-
tion of the Sbox layer. Even if one looks for a rotation property of cell positions, this is
unlikely to lead to an attack since the constants used in a LED round are all distinct and
any position rotation property between columns or lines is removed after the application
of two rounds.

Methods to find better bounds on the algebraic degree were recently published in [12].
With the first two rounds combined as Super-Sboxes, the best algebraic degree we can
find for fixed-key LED permutation and its inverse are 3, 11, 33, 53, 60, 62, for r rounds with
r = 1, . . . , 6. Using this technique, one can distinguish up to 12 rounds with complexity
bounded by 263, in the known key model.

3.5 LED in a hash function setting

Studying a block cipher in a hash function setting is a good security test since it is very
advantageous for the attacker. In this scenario he will have full control on all inputs.
In the so-called known-key [29] or chosen-key models, the attacker can have access or
even choose the key(s) used, and its goal is then to find some input/output pairs having
a certain property with a complexity lower than what is expected for randomly chosen
permutation(s). Typically, the property is that the input and output differences or values
are fixed to a certain subset of the whole domain.

While we conduct an analysis of the security of LED in a hash function setting, we would
like to emphasize that our goal is not to build a secure hash function. However, we believe
that this section adds further confidence in the quality of our block cipher proposal.

Rebound and Super-Sbox attacks. The recent rebound attack [37] and its improved
variants (start-from-the-middle attack [36] and Super-Sbox cryptanalysis [21, 31]) have
much improved the best known attacks on many hash functions, especially for AES-based
schemes. The attacker will first prepare a differential path and then use the available
freedom degrees to the most costly part of the trail (often in the middle) so as to reduce
the overall complexity. The costly part is called the controlled rounds, while the rest of
the trail are the uncontrolled rounds and they are verified probabilistically. The rebound
attack and its variants allows the attacker to nicely use the freedom degrees so that the
controlled part is as big as possible. At the present time, the most powerful technique in
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the known-key setting allows the attacker to control three rounds and no method is known
to control more rounds, even if the key is chosen by the attacker.

In order to ease the analysis, we assume pessimistically that the attacker can control
four rounds, that is one full active big step, with a negligible computation/memory cost
(even if one finds a method to control four AES-like rounds in the chosen-key model, it
will not apply here since no key is inserted during four consecutive rounds). In the case
of 64-bit key LED, the attacker can control two independent active big steps and later
merge them by freely fixing the key value. However, even in this advantageous scenario
for the attacker we are ensured that at least two big steps will be active and uncontrolled,
and this seems sufficient to resist distinguishing attacks. Indeed, for two active big steps
of LED, the upper bound for the best differential path probability and the best linear
approximation probability (respectively the best differential probability and the best linear
hull probability) is 2−100 (respectively 2−64).

For the 128-bit key version, we can again imagine that the attacker to control and
merge two active big steps with a negligible computation/memory cost. Even if so, with the
same reasoning we are ensured that at least four big steps will be active and uncontrolled,
and again this seems sufficient since for four active big steps of LED, the upper bound
for the best differential path probability and the best linear approximation probability
(respectively the best differential probability and the best linear hull probability) is 2−200

(respectively 2−128).
The best attack we could find on LED-64 when the attacker gets to choose the keys

is a distiguisher on 15 rounds: a single-nibble difference is set on the key and the Super-
Sbox technique is used in order to find an internal state value mapping this single-nibble
difference to itself through four rounds. As a consequence, the four rounds before and after
will contain no difference, and one can even add 3 more rounds by letting the difference
spread a little forward and backward without reducing too much the generic complexity.
Overall, with a complexity of about 216 operations, one can distinguish 15 rounds of LED-64
from a random permutation of the same size. In the case of LED-128, the same reasoning
applies by setting a single-nibble difference to the first key and no difference to the second
one. Again, the Super-Sbox technique is used in order to find an internal state value
mapping this single-nibble difference to itself through four rounds and we use the second
key value to connect two such internal state values. As a consequence, the eight rounds
before and after will contain no difference, and one can again add 3 more rounds by letting
the difference spread a little forward and backward. Overall, with a complexity of about
216 operations, one can distinguish 27 rounds of LED-128 from a random permutation of
the same size.

Integral attacks. One can directly adapt the known-key variant of integral attacks
from [29] to the LED internal permutation. However, this attack can only reach seven
rounds with complexity 228, which is worse than what can be obtained with previous
rebound-style attacks.

4 Performance and Comparison

4.1 Hardware implementation

We used Mentor Graphics ModelSimXE 6.4b and Synopsys DesignCompiler A-2007.12-
SP1 for functional simulation and synthesis of the designs to the Virtual Silicon (VST)
standard cell library UMCL18G212T3, which is based on the UMC L180 0.18µm 1P6M
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Fig. 3. Serial hardware architecture of LED (left) and A with its sub-components (right).

logic process with a typical voltage of 1.8 V. For synthesis and for power estimation (using
Synopsys Power Compiler version A-2007.12-SP1 ) we advised the compiler to keep the
hierarchy and use a clock frequency of 100 KHz, which is a widely cited operating frequency
for RFID applications. Note that the wire-load model used, though it is the smallest
available for this library, still simulates the typical wire-load of a circuit with a size of
around 10, 000 GE.

To substantiate our claims on the hardware efficiency of our LED family, we have im-
plemented LED-64 and LED-128 in VHDL and simulated their post-synthesis performance.
As can be seen in Figure 3, our serialized design consists of seven modules: MCS, State,
AK, AC, SC, Controller, and Key State.

State comprises a 4 ·4 array of flip-flop cells storing 4 bits each. Every row constitutes
a shift-register using the output of the last stage, i.e. column 0, as the input to the first
stage (column 3) of the same row and the next row. Using this feedback functionality
ShiftRows can be performed in 3 clock cycles with no additional hardware costs. Further,
since MixColumnsSerial is performed on column 0, also a vertical shifting direction is
required for this column. Consequently, columns 0 and 3 consist of flip-flop cells with two
inputs (6 GE), while columns 1 and 2 can be realized with flip-flop cells with only one
input (4.67 GE).

The key is stored in Key State, which comprises of a 4-bit wide simple shift register
of the appropriate length, i.e. 64 or 128. Please note that the absence of a key-schedule of
LED has two advantages: it allows 1) to use the most basic, and thus cheapest, flip-flops
(4.67 GE per bit); and 2) to hardwire the key in case no key update is required. In the
latter case additional combinational logic is required to select the appropriate key chunk,
which reduces the savings to 278 GE and 577 GE for LED-64 and LED-128, respectively.
For arbitrary key lengths the area requirements grow by 4.67 GE per bit. An LED-80 with
the same parameters as PRESENT-80 would thus require approximately 1, 040 GE with a
flexible key and around 690 GE with fixed key.

MCS calculates the last row of A in one clock cycle. The result is stored in the State

module, that is in the last row of column 0, which has been shifted upwards at the same
time. Consequently, after 4 clock cycles the MixColumnsSerial operation is applied to an
entire column. Then the whole state array is rotated by one position to the left and the
next column is processed. As an example of the hardware efficiency of MCS we depict A
in the upper and its sub-components in the lower right part of Figure 3. In total only 40
GE and 20 clock cycles are required to perform MCS, which is 4 clock cycles slower but
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85% smaller than a serialized implementation of the AES MixColumns [24]. If we take
into account that AES operates on 8 bits and not like LED on 4 bits, the area savings are
still more than 40%.

AK performs the AddRoundKey operation by XORing the roundkey every fourth round.
For this reason the input to the XNOR gate is gated with a NAND gate.

AC performs one part of the AddConstant operation by XORing the first column of the
round constant matrix (a simple arithmetic 2-bit counter) to the first column of the state
matrix. For this reason, the input to the XNOR gate is gated with a NAND gate. In order
to use a single control signal for the addition of the round constants, which span over the
first two columns, the addition of the second column of the round constant matrix to the
second column of the state array is performed in the State module.

SC performs the SubCells operation and consists of a single instantiation of the corre-
sponding Sbox. We used an optimized Boolean representation of the PRESENT Sbox,4 which
only requires 22.33 GE. It takes 16 clock cycles to perform AddConstant and SubCells on
the whole state.

Controller uses a Finite State Machine (FSM) to generate all control signals required.
The FSM consists of one idle state, one init state to load the initial values, one state for
the combined execution of AC and SC, 3 states for ShR and two states for MCS (one
for processing one column and another one to rotate the whole state to the left). Several
LFSR-based counters are required: 6-bit for the generation of the second column of the
round constants matrix, 4-bit for the key addition scheduling and 2-bit for the transition
conditions of the FSM. Besides, a 2-bit arithmetic counter is required for the generation
of the first column of the round constants matrix. Its LSB is also used to select either the
3 MSB rc5||rc4||rc3 or the 3 LSB rc2||rc1||rc0 of the 6-bit LFSR-based counter. In total
the control logic sums up to 199 GE.

It requires 39 clock cycles to perform one round of LED, resulting in a total latency
of 1248 clock cycles for LED-64 and 1872 clock cycles for LED-128. The estimated power
consumption at a frequency of 100 KHz and a supply voltage ov 1.8V is 1.67µW for LED-
64 (1.11µW with a hard-wired key) and 2.2µW for LED-128 (1.11µW). It is a well-known
fact that at low frequencies, as typical for low-cost applications, the power consumption is
dominated by its static part, which is proportional to the amount of transistors involved.
Furthermore, the power consumption strongly depends on the used technology and greatly
varies with the simulation method. To address these issues and to reflect the time-area-
power trade-off inherent in any hardware implementation a new figure of merit (FOM) was
proposed by [5]. In order to have a fair comparison, we omit the power values in Table 2
and only compare cycles per block, throughput at 100 KHz (in kilo bits per second), the
area requirements (in GE), and FOM (in nano bits per clock cycle per GE squared).

Table 2 compares our results to previous work, sorted according to key flexibility and
increasing security levels. Note that we have not been able to include all recent proposals
and we have restricted ourselves to block ciphers for our comparison. Other techniques
such as hummingbird [19] and armadillo [5] are of some interest in the literature,
though attacks on early versions have lead to some redesign [45, 1, 20]. As can be seen
from Table 2, the block cipher LED is the smallest when compared to other block ciphers
with similar key and block size.

4 Due to Dag Arne Osvik.
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Table 2. Hardware implementation results of some block ciphers. [44] also synthesized the same
architecture of PRESENT and yielded a lower gate count of 1, 000 GE. However, the number quoted
below is from the same library used here and hence is a fairer choice for comparison. * denotes
estimated values.

key block cycles/ T’put Tech. Area FOM

Algorithm Ref. size size block (@100 KHz) [µm] [GE] [ bits×109

clk·GE2 ]

Flexible Keys

DESL [32] 56 64 144 44.4 0.18 1,848 130

LED-64 64 64 1,248 5.1 0.18 966 55

KLEIN-64 [22] 64 64 207 N/A 0.18 1,220 N/A

LED-80* 80 64 1,872 3.4 0.18 1,040 32

PRESENT-80 [44] 80 64 547 11.7 0.18 1,075 101

PRESENT-80 [11] 80 64 32 200.0 0.18 1,570 811

KATAN64 [13] 80 64 255 25.1 0.13 1,054 226

KLEIN-80 [22] 80 64 271 N/A 0.18 1,478 N/A

LED-96* 96 64 1,872 3.4 0.18 1,116 27

KLEIN-96 [22] 96 64 335 N/A 0.18 1,528 N/A

mCrypton [33] 96 64 13 492.3 0.13 2,681 685

SEA [34] 96 96 93 103.0 0.13 3,758 73

LED-128 128 64 1,872 3.4 0.18 1,265 21

PRESENT-128 [41] 128 64 559 11.4 0.18 1,391 59

PRESENT-128 [11] 128 64 32 200.0 0.18 1,886 562

HIGHT [26] 128 64 34 188.0 0.25 3,048 203

AES [38] 128 128 226 56.6 0.13 2,400 98

DESXL [32] 184 64 144 44.4 0.18 2,168 95

Hard-wired Keys

LED-64 64 64 1,280 5.13 0.18 688 108

PRINTcipher-48 [30] 80 48 768 6.2 0.18 402 387

KTANTAN64 [13] 80 64 255 25.1 0.13 688 530

LED-80* 80 64 1,872 3.4 0.18 690 72

LED-96* 96 64 1,872 3,42 0.18 695 71

LED-128 128 64 1,872 3.42 0.18 700 70

PRINTcipher-96 [30] 160 96 3072 3.13 0.18 726 59

4.2 Software implementation

We have made two implementations of LED; one for reference and clarity with the second
being optimized for performance (by using table lookups). The measurements were taken
on an Intel(R) Core(TM) i7 CPU Q 720 clocked at 1.60GHz.

In the optimised implementation, we represent the LED state as a single 64-bit word
and we build eight lookup tables each with 256 64-bit entries. This is similar to many
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AES implementations, except we treat two consecutive nibbles (2 × 4 bits) as a unit for
the lookup table. Hence SubCells, ShiftRows and MixColumnsSerial can all be achieved
using eight table lookups and XORs.

Overall, we need to access 8× 32× 2 = 512 32-bit words of memory (or 8× 32 = 256
64-bit words of memory). In contrast, an AES implementation with four tables of 256
entries would require (16 + 4) × 10 = 200 accesses. This suggests that LED-64 should be
about 2.5 times slower than AES on 32-bit platforms with table-based implementations,
and similarly LED-128 will be 3.8 slower than AES. Our software implementation results
are given in Table 3.

Table 3. Software implementation results of LED.

reference implementation table-based implementation

LED-64 4.9k cycles/byte 57 cycles/byte

LED-128 7.3k cycles/byte 86 cycles/byte

5 Conclusion

In this paper we have presented the block cipher LED. Clearly, given its novelty, the cipher
should not be used in applications until there has been sufficient independent analysis. Nev-
ertheless, we hope that our design is of some interest and we have focused our attention on
what seem to be the neglected areas of key schedule design and protection against related-
key attacks. Furthermore, we have done so while working in one of the more challenging
design spaces—that of constrained hardware implementation—and we have proposed one
of the smallest block ciphers in the literature (for comparable choices of parameters) while
striving to maintain a competitive performance in software. Additional information on LED

will be made available via https://sites.google.com/site/ledblockcipher/ and we
welcome all comments and analysis.
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Appendix

Round constants. The generating methods of the round constants have been described
in Section 2.1. Below are the list of (rc5, rc4, rc3, rc2, rc1, rc0) encoded to byte values for
each round, with rc0 being the least significant bit.

Rounds Constants

1-24 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E,1D,3A,35,2B,16,2C,18,30

25-48 21,02,05,0B,17,2E,1C,38,31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

Test vectors. Test vectors for LED with 64-bit and 128-bit key arrays are given below.
More test vectors are provided at https://sites.google.com/site/ledblockcipher/.

plaintext key ciphertext

LED-64

0 0 0 0 0 0 0 0 E F B B

0 0 0 0 0 0 0 0 B D 6 D

0 0 0 0 0 0 0 0 3 6 8 B

0 0 0 0 0 0 0 0 8 9 9 9

0 1 2 3 0 1 2 3 F D D 6

4 5 6 7 4 5 6 7 F B 9 8

8 9 A B 8 9 A B 4 5 F 8

C D E F C D E F 1 4 5 6

LED-128

0 0 0 0 0 0 0 0 0 0 0 0 1 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 B 2 3 0

0 0 0 0 0 0 0 0 0 0 0 0 E 8 F 9

0 0 0 0 0 0 0 0 0 0 0 0 2 8 B B

0 1 2 3 0 1 2 3 0 1 2 3 3 1 3 1

4 5 6 7 4 5 6 7 4 5 6 7 C 2 3 1

8 9 A B 8 9 A B 8 9 A B 2 0 5 C

C D E F C D E F C D E F 3 6 6 4

Appeared in B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 326–341.
c© Springer-Verlag Berlin Heidelberg 2011


